Destructive updates for a synchronous language

Ulysse Beaugnon

Under the supervision of Albert Cohen and Marc Pouzet

December 2, 2014

Efficient arrays for a synchronous dataflow language

Based on a Lustre-like synchronous dataflow language

Improve array performance

Keep a functional semantics

Preserve the modularity of functions

Functional arrays

```
Synchronous dataflow code
(* Declares a new array and reads from it *)
e: int[10] = d^{10}
f: int = d[4]
(* Defines a new array from e *)
g: int[10] = e[3] < -42
C code
int e[10] = { d }, g[10];
int f = e[4];
g[3] = 42;
```

Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

Destructive updates

Performance issues with functional arrays

- Each update implies a full copy of the array
- The copy is needed only if the original array is accessed later

(* g is a new array *) g: int[10] = e[3] <- 42

Destructive updates with a functional semantics

- When an array is written to, it is consumed
- Add constraints to ensure no consumed array is accessed
- Avoid copies and keep a functional semantic

Constraints as dependencies

Our approach: scheduling constraints

- Add dependencies from reads to aliasing writes
- Rely on the implicitly scheduled semantic of the language

Unavoidable copies

- Reject programs when dependency cycles are detected
- Let the programmer manually add copies

Retiming

```
(* Original code: b(t) depends on C(t+1) *)
B: int[8] = (pre A)[i] <- 3
c: int = A[4] + 10</pre>
```

```
(* Generated code: c is delayed by 1 *)
pre_c: int = (pre A)[4] + 10
B: int[8] = (pre A)[i] <- 3</pre>
```

Retiming is needed for genericity

- Retiming depends on aliasing
- Aliasing depends on the calling context
- Generate different retimings for different contexts

Static schedule

A static schedule is given by:

- A retiming function $r: Eq \to \mathbb{Z}$
 - a(t) is computed at the reaction t + r(a)
- A total order \lhd on Eq to schedule within a single reaction
 - $a \triangleleft b \iff a$ is scheduled before b

Data and R/W dependencies must be respected

$$orall t \in \mathbb{N}$$
: $a(t)$ depends on $b(t - w) \Longrightarrow$
 $r(b) < r(a) + w \lor (r(b) = r(a) + w \land b \lhd a)$

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

Separate compilation

Need the context to compile

- Aliasing between arguments
- Feedback loops might add dependencies
- Need dependencies to order equations

Try to avoid inlining

- Exponential compilation time
- Exponential generated code size

Aliasing dependencies as feedback loops

```
node f(A, B: int[8])
    = (c: int) {
    D: int[8] = B[0] <- 0
    c: int = A[3] + D[3]
}
(* Without aliasing *)
x: int = f(A', B')
(* With aliasing *)
y: int = f(A', A')</pre>
```

Aliasing unknown

Aliasing dependencies as feedback loops

Only expose arrays that alias with an input or an ouput

Aliasing dependencies as feedback loops

Reduced to the the problem of feeback loops handling

Dependency graph representing a synchronous dataflow function

The schedule depends on the context

The schedule depends on the context

P. Raymond & M. Pouzet: Grey-boxing

- compile atomic groups of equations together
- only keep dependencies between the groups

 $b \xrightarrow{w} a \iff a(t)$ depends on b(t-w)

 $i_0(t), a(t-1), b(t), o_0(t-1)$ $i_1(t), c(t)$ $i_2(t), o_1(t+3)$

Only keep the I/O, the dependencies and the retiming constraints

Grey-boxing formalization

A grey-boxing is given by:

- A partitioning X_0, \ldots, X_{k-1} of equations in atomic sub-nodes
- A static schedule $(r_i : X_i \to \mathbb{Z}, \lhd_i)$ for each sub-node
- A dependency relation $X_i \xrightarrow{w} X_j$ among sub-nodes

Grey-boxings must:

- Not forbid any calling context
- ▶ Respect dependencies. If $a \in X_i$ and $b \in X_j$, then:

$$a(t)$$
 depends on $b(t-w) \implies X_j \xrightarrow{w-r_j(b)+r_i(a)} X_i$

Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

Encode a grey-boxing as a relation

Dependency relation: strict ordering

 $a \xrightarrow{w} b \iff a(t-w)$ must be scheduled before b(t)

Weighted preorder: allows equations to be grouped

$$a \stackrel{\scriptscriptstyle{W}}{\sim} b \iff a(t-w)$$
 is scheduled before or with $b(t)$

Weighted equivalence: gives the groups and their retiming

$$a \stackrel{w}{\simeq} b \iff a \stackrel{w}{\prec} b \wedge b \stackrel{-w}{\prec} a$$

 $\iff a \text{ and } b \text{ are in the same group and } r(a) - r(b) = w$
 $\iff b(t) \text{ is computed together with } a(t - w)$

Weighted preorder

Definition (Weighted preorder)

A weighted preorder \preceq is a ternary relation $\subseteq S \times \mathbb{Z} \times S$ that:

is reflexive for any positive weight:

$$\forall a \in S, w \ge 0 : a \stackrel{w}{\precsim} a$$

is transitive:

$$\forall a, b, c \in S: a \stackrel{\lor}{\preceq} b \land b \stackrel{w}{\preceq} c \implies a \stackrel{v+w}{\preceq} c$$

Weighted equivalence

Definition (Weighted equivalence)

A weighted equivalence \simeq is a ternary relation $\subseteq S \times \mathbb{Z} \times S$ that:

• is relfexive:
$$\forall a \in S : a \stackrel{0}{\simeq} a$$

is transitive:

$$\forall a, b, c \in S: a \stackrel{v}{\simeq} b \land b \stackrel{w}{\simeq} c \implies a \stackrel{v+w}{\simeq} b$$

has unique weights:

$$\forall a, b \in S: a \stackrel{\lor}{\simeq} b \land a \stackrel{w}{\simeq} b \implies a = b$$

negates weights when operands are swapped:

$$\forall a, b \in S : a \stackrel{w}{\simeq} b \implies b \stackrel{-w}{\simeq} a$$

Valid weighted preorder

Definition (Valid weighted preorder)

A weighted preorder is *valid* when weights are bouded:

$$\forall a, b \in S, \exists w_0 \in \mathbb{Z} : a \stackrel{w}{\prec} b \implies w \ge w_0$$

Proposition

A valid weighted preorder induce a weighted equivalence:

$$a \stackrel{w}{\prec} b \wedge b \stackrel{-w}{\prec} a \iff a \stackrel{w}{\cong} b$$

Static partitioning

Definition (Static partitioning)

A static partitioning is a valid weighted preorder that:

contains dependencies

$$b(t)$$
 depends on $a(t-w) \implies a \stackrel{w}{\preceq} b$

maps dependencies on inputs and outputs

$$i \stackrel{\scriptscriptstyle{W}}{\scriptstyle{\sim}} o \implies o(t)$$
 depends on $i(t-w)$

Theorem

Static partitionings are exactly the grey-boxings that do not reject any calling context and respect dependencies. How to find a mimimal grey-boxing

Encode in the quantifier-free Presburger arithmetic:

 \precsim is a static partitioning with k classes

Use a SMT solver

- Try to satisfy the formula for k = 1, 2, 3, ...
- Stop when a solution is found
- Exponential complexity, but the problem is NP-Hard

Heuristic

Preorder saturation

- The dependency relation $a \stackrel{w}{\longrightarrow} b$ is a static partitioning
 - each group contains a single equation: full inlining
- Add constraints to the weighted preorder to form groups

Arguments in favor of the heuristic

- Based on a heuristic that does not handle retiming [Pouzet and Raymond 2009]
- Optimal on inputs and outputs
- A sub-optimal partitioning is still better than inlining

Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

Highlights

Destructive updates for synchronous dataflow languages

- Array updates are in-place by default
- No copies between reactions

Modular retiming

- Allows inter-reaction scheduling
- Gives more flexibility
- Other uses ?

Scheduling constraints to enforce destructive updates

- A typing system is traditionally used instead
- Could be applied to conventional functional languages

Future work

```
Aliasing analysis

(* Do A and B alias ? *)

A: int[8] = if x then X else Y

B: int[8] = if x then Y else X

(* Do A[i] and A[C[j]] alias ? *)

C = A[i] <- 0

x = A[C[j]]
```

Memory management

- Multiple array location possible per variable
- Live range of arrays are unknown

Handle clocks