Destructive updates for a synchronous language

Ulysse Beaugnon
Under the supervision of Albert Cohen and Marc Pouzet

December 2, 2014

Efficient arrays for a synchronous dataflow language

- Based on a Lustre-like synchronous dataflow language
- Improve array performance
- Keep a functional semantics
- Preserve the modularity of functions

Functional arrays

Synchronous dataflow code

```
(* Declares a new array and reads from it *)
e: int[10] = d^10
f: int = d[4]
(* Defines a new array from e *)
g: int[10] = e[3] <- 42
```

C code

```
int e[10] = { d }, g[10];
int f = e[4];
```

memcpy (g, e, 10*sizeof(int)); \longleftarrow costly
$\mathrm{g}[3]=42$;

Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

Destructive updates

Performance issues with functional arrays

- Each update implies a full copy of the array
- The copy is needed only if the original array is accessed later

```
(* g is a new array *)
g: int[10] = e[3] <- 42
```

Destructive updates with a functional semantics

- When an array is written to, it is consumed
- Add constraints to ensure no consumed array is accessed
- Avoid copies and keep a functional semantic

Constraints as dependencies

Our approach: scheduling constraints

- Add dependencies from reads to aliasing writes
- Rely on the implicitly scheduled semantic of the language

Unavoidable copies

- Reject programs when dependency cycles are detected
- Let the programmer manually add copies

Retiming

```
(* Original code: b(t) depends on C(t+1) *)
B: int[8] = (pre A)[i] <- 3
C: int = A[4] + 10
(* Generated code: c is delayed by 1 *)
pre_c: int = (pre A)[4] + 10
B: int[8] = (pre A) [i] <- 3
```

Retiming is needed for genericity

- Retiming depends on aliasing
- Aliasing depends on the calling context
- Generate different retimings for different contexts

Static schedule

A static schedule is given by:

- A retiming function $r: E q \rightarrow \mathbb{Z}$
- $a(t)$ is computed at the reaction $t+r(a)$
- A total order \triangleleft on Eq to schedule within a single reaction
- $a \triangleleft b \Longleftrightarrow a$ is scheduled before b

Data and R/W dependencies must be respected

$$
\begin{aligned}
& \forall t \in \mathbb{N}: a(t) \text { depends on } b(t-w) \Longrightarrow \\
& \quad r(b)<r(a)+w \vee(r(b)=r(a)+w \wedge b \triangleleft a)
\end{aligned}
$$

Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

Separate compilation

Need the context to compile

- Aliasing between arguments
- Feedback loops might add dependencies
- Need dependencies to order equations

Try to avoid inlining

- Exponential compilation time
- Exponential generated code size

Aliasing dependencies as feedback loops

```
node f(A, B: int[8])
            = (c: int) {
    D: int[8] = B[0] <- 0
    c: int = A[3] + D[3]
}
(* Without aliasing *)
x: int = f(A', B')
(* With aliasing *)
y: int = f(A', A')
```


Aliasing unknown

Aliasing dependencies as feedback loops

```
node f(A, B: int[8])
            = (c: int) {
    D: int[8] = B[0] <- 0
    c: int = A[3] + D[3]
}
(* Without aliasing *)
x: int = f(A', B')
(* With aliasing *)
y: int = f(A', A')
```


Only expose arrays that alias with an input or an ouput

Aliasing dependencies as feedback loops

```
node f(A, B: int[8])
            = (c: int) {
    D: int[8] = B[0] <- 0
    c: int = A[3] + D[3]
}
(* Without aliasing *)
x: int = f(A', B')
(* With aliasing *)
y: int = f(A', A')
```


Reduced to the the problem of feeback loops handling

Feedback loops without retiming

Dependency graph representing a synchronous dataflow function

Feedback loops without retiming

The schedule depends on the context

Feedback loops without retiming

The schedule depends on the context

Feedback loops without retiming

P. Raymond \& M. Pouzet: Grey-boxing

- compile atomic groups of equations together
- only keep dependencies between the groups

Feedback loops with retiming

$$
b \xrightarrow{w} a \Longleftrightarrow a(t) \text { depends on } b(t-w)
$$

Feedback loops with retiming

$$
\begin{array}{r}
i_{0}(t), a(t-1), b(t), o_{0}(t-1) \\
i_{1}(t), c(t) \quad i_{2}(t), o_{1}(t+3)
\end{array}
$$

Feedback loops with retiming

Only keep the I/O, the dependencies and the retiming constraints

Grey-boxing formalization

A grey-boxing is given by:

- A partitioning X_{0}, \ldots, X_{k-1} of equations in atomic sub-nodes
- A static schedule $\left(r_{i}: X_{i} \rightarrow \mathbb{Z}, \triangleleft_{i}\right)$ for each sub-node
- A dependency relation $X_{i} \xrightarrow{w} X_{j}$ among sub-nodes

Grey-boxings must:

- Not forbid any calling context
- Respect dependencies. If $a \in X_{i}$ and $b \in X_{j}$, then:

$$
a(t) \text { depends on } b(t-w) \Longrightarrow X_{j} \xrightarrow{w-r_{j}(b)+r_{i}(a)} X_{i}
$$

Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

Encode a grey-boxing as a relation

Dependency relation: strict ordering

$$
a \xrightarrow{w} b \Longleftrightarrow a(t-w) \text { must be scheduled before } b(t)
$$

Weighted preorder: allows equations to be grouped

$$
a \stackrel{w}{\precsim} b \Longleftrightarrow a(t-w) \text { is scheduled before or with } b(t)
$$

Weighted equivalence: gives the groups and their retiming
$a \stackrel{w}{\sim} b \quad a \quad \stackrel{w}{\precsim} b \wedge b \stackrel{-w}{\precsim} a$
$\Longleftrightarrow \quad a$ and b are in the same group and $r(a)-r(b)=w$
$\Longleftrightarrow b(t)$ is computed together with $a(t-w)$

Weighted preorder

Definition (Weighted preorder)

A weighted preorder \precsim is a ternary relation $\subseteq S \times \mathbb{Z} \times S$ that:

- is reflexive for any positive weight:

$$
\forall a \in S, w \geq 0: a \stackrel{w}{\precsim} a
$$

- is transitive:

$$
\forall a, b, c \in S: a \stackrel{v}{\precsim} b \wedge b \stackrel{w}{\precsim} c \Longrightarrow a \stackrel{v+w}{\precsim} c
$$

Weighted equivalence

Definition (Weighted equivalence)
A weighted equivalence \simeq is a ternary relation $\subseteq S \times \mathbb{Z} \times S$ that:

- is relfexive: $\forall a \in S: a \stackrel{0}{\sim} a$
- is transitive:

$$
\forall a, b, c \in S: a \stackrel{v}{\simeq} b \wedge b \stackrel{w}{\simeq} c \Longrightarrow a \stackrel{v+w}{\simeq} b
$$

- has unique weights:

$$
\forall a, b \in S: a \stackrel{v}{\simeq} b \wedge a \stackrel{w}{\simeq} b \Longrightarrow a=b
$$

- negates weights when operands are swapped:

$$
\forall a, b \in S: a \stackrel{w}{\simeq} b \Longrightarrow b \stackrel{-w}{\simeq} a
$$

Valid weighted preorder

Definition (Valid weighted preorder)
A weighted preorder is valid when weights are bouded:

$$
\forall a, b \in S, \exists w_{0} \in \mathbb{Z}: a \stackrel{w}{\precsim} b \Longrightarrow w \geq w_{0}
$$

Proposition
A valid weighted preorder induce a weighted equivalence:

$$
a \stackrel{w}{\precsim} b \wedge b \stackrel{-w}{\precsim} a \Longleftrightarrow a \stackrel{w}{\sim} b
$$

Static partitioning

Definition (Static partitioning)
A static partitioning is a valid weighted preorder that:

- contains dependencies

$$
b(t) \text { depends on } a(t-w) \Longrightarrow a \stackrel{w}{\precsim} b
$$

- maps dependencies on inputs and outputs

$$
i \stackrel{w}{\precsim} o \Longrightarrow o(t) \text { depends on } i(t-w)
$$

Theorem
Static partitionings are exactly the grey-boxings that do not reject any calling context and respect dependencies.

How to find a mimimal grey-boxing

Encode in the quantifier-free Presburger arithmetic:

$$
\precsim \text { is a static partitioning with } k \text { classes }
$$

Use a SMT solver

- Try to satisfy the formula for $k=1,2,3, \ldots$
- Stop when a solution is found
- Exponential complexity, but the problem is NP-Hard

Heuristic

Preorder saturation

- The dependency relation $a \xrightarrow{w} b$ is a static partitioning
- each group contains a single equation: full inlining
- Add constraints to the weighted preorder to form groups

Arguments in favor of the heuristic

- Based on a heuristic that does not handle retiming [Pouzet and Raymond 2009]
- Optimal on inputs and outputs
- A sub-optimal partitioning is still better than inlining

Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

Highlights

Destructive updates for synchronous dataflow languages

- Array updates are in-place by default
- No copies between reactions

Modular retiming

- Allows inter-reaction scheduling
- Gives more flexibility
- Other uses ?

Scheduling constraints to enforce destructive updates

- A typing system is traditionally used instead
- Could be applied to conventional functional languages

Future work

Aliasing analysis

```
(* Do A and B alias ? *)
A: int[8] = if x then X else Y
B: int[8] = if x then Y else X
(* Do A[i] and A[C[j]] alias ? *)
C = A[i] <- 0
x = A[C[j]]
```

Memory management

- Multiple array location possible per variable
- Live range of arrays are unknown

Handle clocks

