
Destructive updates for a synchronous language

Ulysse Beaugnon

Under the supervision of Albert Cohen and Marc Pouzet

December 2, 2014

1 / 22



Efficient arrays for a synchronous dataflow language

I Based on a Lustre-like synchronous dataflow language

I Improve array performance

I Keep a functional semantics

I Preserve the modularity of functions

2 / 22



Functional arrays

Synchronous dataflow code
(* Declares a new array and reads from it *)
e: int [10] = d^10
f: int = d[4]

(* Defines a new array from e *)
g: int [10] = e[3] <- 42

C code
int e[10] = { d }, g[10];
int f = e[4];

memcpy (g, e, 10* sizeof (int ));
g[3] = 42;

costly

3 / 22



Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

4 / 22



Destructive updates

Performance issues with functional arrays
I Each update implies a full copy of the array
I The copy is needed only if the original array is accessed later

(* g is a new array *)
g: int [10] = e[3] <- 42

Destructive updates with a functional semantics
I When an array is written to, it is consumed
I Add constraints to ensure no consumed array is accessed
I Avoid copies and keep a functional semantic

4 / 22



Constraints as dependencies

Our approach: scheduling constraints
I Add dependencies from reads to aliasing writes
I Rely on the implicitly scheduled semantic of the language

(* Consumes a *)
b: int [8] = a[0] <- 0

(* Accesses a *)
c: int = a[0] + 10

b depends on c

Unavoidable copies
I Reject programs when dependency cycles are detected
I Let the programmer manually add copies

5 / 22



Retiming

(* Original code: b(t) depends on C(t+1) *)
B: int [8] = (pre A)[i] <- 3
c: int = A[4] + 10

(* Generated code: c is delayed by 1 *)
pre_c: int = (pre A)[4] + 10
B: int [8] = (pre A)[i] <- 3

Retiming is needed for genericity
I Retiming depends on aliasing
I Aliasing depends on the calling context
I Generate different retimings for different contexts

6 / 22



Static schedule

A static schedule is given by:
I A retiming function r : Eq → Z

I a(t) is computed at the reaction t + r(a)
I A total order C on Eq to schedule within a single reaction

I a C b ⇐⇒ a is scheduled before b

Data and R/W dependencies must be respected

∀t ∈ N : a(t) depends on b(t − w) =⇒
r(b) < r(a) + w ∨ (r(b) = r(a) + w ∧ b C a)

7 / 22



Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

8 / 22



Separate compilation

Need the context to compile
I Aliasing between arguments
I Feedback loops might add dependencies
I Need dependencies to order equations

Try to avoid inlining
I Exponential compilation time
I Exponential generated code size

8 / 22



Aliasing dependencies as feedback loops

node f(A, B: int [8])
= (c: int) {

D: int [8] = B[0] <- 0
c: int = A[3] + D[3]

}

(* Without aliasing *)
x: int = f(A’, B’)

(* With aliasing *)
y: int = f(A’, A’)

A

Reads A

B

Writes B

Reads A

Writes B

c

?

Aliasing unknown

9 / 22



Aliasing dependencies as feedback loops

node f(A, B: int [8])
= (c: int) {

D: int [8] = B[0] <- 0
c: int = A[3] + D[3]

}

(* Without aliasing *)
x: int = f(A’, B’)

(* With aliasing *)
y: int = f(A’, A’)

A

Reads A

B

Writes B

Reads A

Writes B

c

Only expose arrays that alias with an input or an ouput

9 / 22



Aliasing dependencies as feedback loops

node f(A, B: int [8])
= (c: int) {

D: int [8] = B[0] <- 0
c: int = A[3] + D[3]

}

(* Without aliasing *)
x: int = f(A’, B’)

(* With aliasing *)
y: int = f(A’, A’)

A

Reads A

B

Writes B

Reads A

Writes B

c

Reduced to the the problem of feeback loops handling

9 / 22



Feedback loops without retiming

i0

a b

o0

i1

c

i2

o1

Dependency graph representing a synchronous dataflow function

10 / 22



Feedback loops without retiming

i0

a b

o0

i1

c

i2

o1

The schedule depends on the context

10 / 22



Feedback loops without retiming

i0

a b

o0

i1

c

i2

o1

The schedule depends on the context

10 / 22



Feedback loops without retiming

i0

a b

o0

i1

c

i2

o1

P. Raymond & M. Pouzet: Grey-boxing
I compile atomic groups of equations together
I only keep dependencies between the groups

10 / 22



Feedback loops with retiming

i0

a b

o0

i1

c

i2

o1

1 0 0 0

-3

0 1 2

b w−→ a ⇐⇒ a(t) depends on b(t − w)

11 / 22



Feedback loops with retiming

i0

a b

o0

i1

c

i2

o1

1 0 0 0

-3

0 1 2

i0(t), a(t − 1), b(t), o0(t − 1)

i1(t), c(t) i2(t), o1(t + 3)

11 / 22



Feedback loops with retiming

0 -3

Only keep the I/O, the dependencies and the retiming constraints

12 / 22



Grey-boxing formalization

A grey-boxing is given by:
I A partitioning X0, . . . , Xk−1 of equations in atomic sub-nodes
I A static schedule (ri : Xi → Z,Ci) for each sub-node
I A dependency relation Xi

w−→ Xj among sub-nodes

Grey-boxings must:
I Not forbid any calling context
I Respect dependencies. If a ∈ Xi and b ∈ Xj , then:

a(t) depends on b(t − w) =⇒ Xj
w−rj (b)+ri (a)
−−−−−−−→ Xi

13 / 22



Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

14 / 22



Encode a grey-boxing as a relation

Dependency relation: strict ordering

a w−→ b ⇐⇒ a(t − w) must be scheduled before b(t)

Weighted preorder: allows equations to be grouped

a
w
- b ⇐⇒ a(t − w) is scheduled before or with b(t)

Weighted equivalence: gives the groups and their retiming

a w' b ⇐⇒ a
w
- b ∧ b

−w
- a

⇐⇒ a and b are in the same group and r(a)− r(b) = w
⇐⇒ b(t) is computed together with a(t − w)

14 / 22



Weighted preorder

Definition (Weighted preorder)
A weighted preorder - is a ternary relation ⊆ S × Z× S that:

I is reflexive for any positive weight:

∀a ∈ S, w ≥ 0 : a
w
- a

I is transitive:

∀a, b, c ∈ S : a
v
- b ∧ b

w
- c =⇒ a

v+w
- c

15 / 22



Weighted equivalence

Definition (Weighted equivalence)
A weighted equivalence ' is a ternary relation ⊆ S × Z× S that:

I is relfexive: ∀a ∈ S : a 0' a
I is transitive:

∀a, b, c ∈ S : a v' b ∧ b w' c =⇒ a v+w' b

I has unique weights:
∀a, b ∈ S : a v' b ∧ a w' b =⇒ a = b

I negates weights when operands are swapped:

∀a, b ∈ S : a w' b =⇒ b −w' a

16 / 22



Valid weighted preorder

Definition (Valid weighted preorder)
A weighted preorder is valid when weights are bouded:

∀a, b ∈ S,∃w0 ∈ Z : a
w
- b =⇒ w ≥ w0

Proposition
A valid weighted preorder induce a weighted equivalence:

a
w
- b ∧ b

−w
- a ⇐⇒ a w' b

17 / 22



Static partitioning

Definition (Static partitioning)
A static partitioning is a valid weighted preorder that:

I contains dependencies

b(t) depends on a(t − w) =⇒ a
w
- b

I maps dependencies on inputs and outputs

i
w
- o =⇒ o(t) depends on i(t − w)

Theorem
Static partitionings are exactly the grey-boxings that do not reject
any calling context and respect dependencies.

18 / 22



How to find a mimimal grey-boxing

Encode in the quantifier-free Presburger arithmetic:

- is a static partitioning with k classes

Use a SMT solver
I Try to satisfy the formula for k = 1, 2, 3, . . .

I Stop when a solution is found
I Exponential complexity, but the problem is NP-Hard

19 / 22



Heuristic

Preorder saturation
I The dependency relation a w−→ b is a static partitioning

I each group contains a single equation: full inlining
I Add constraints to the weighted preorder to form groups

Arguments in favor of the heuristic
I Based on a heuristic that does not handle retiming

[Pouzet and Raymond 2009]
I Optimal on inputs and outputs
I A sub-optimal partitioning is still better than inlining

20 / 22



Outline

Destructive updates

Modular scheduling

Scheduling algorithms

Conclusion and future work

21 / 22



Highlights

Destructive updates for synchronous dataflow languages
I Array updates are in-place by default
I No copies between reactions

Modular retiming
I Allows inter-reaction scheduling
I Gives more flexibility
I Other uses ?

Scheduling constraints to enforce destructive updates
I A typing system is traditionally used instead
I Could be applied to conventional functional languages

21 / 22



Future work

Aliasing analysis
(* Do A and B alias ? *)
A: int [8] = if x then X else Y
B: int [8] = if x then Y else X

(* Do A[i] and A[C[j]] alias ? *)
C = A[i] <- 0
x = A[C[j]]

Memory management
I Multiple array location possible per variable
I Live range of arrays are unknown

Handle clocks

22 / 22


	Destructive updates
	Modular scheduling
	Scheduling algorithms
	Conclusion and future work

