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Compositionality and reuse: from ODE to DAE

from Simulink (ODE):
HS in state space form{

ẋ = f (x , u)
y = g(x , u)

the state space form
depends on the context

reuse is difficult


−→



to Modelica (DAE):
HS as physical balance equations{

0 = f (ẋ , x , u)
0 = g(x , u)

Ohm & Kirchhoff laws, bond graphs,
multi-body mechanical systems

reuse is much easier
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Compositionality and reuse: from ODE to DAE

I Modeling tools supporting DAE

I Most modeling tools provide only a library of predefined models
ready for assembly (Mathworks/Simscape, LMS/AmeSim)

I Modelica comes with a full programming language that is a public
standard https://www.modelica.org/ ; also Spice for EDA

I Strange outcomes for the simulations were known to occur with
Simulink/Stateflow (ask Tim Bourke and Marc Pouzet for nice ones);

I Exploration of Modelica is only starting. . .
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Compositionality and reuse: from ODE to DAE

I We do not claim that these tools are bad, as there are real difficulties:

I from ODE solvers to DAE solvers

I events of mode changes for Hybrid DAE systems

I and the physics itself:

semiconductor,
circuit breaker,

...

multibody
mechanics

sliding
modes
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A key notion in DAE Systems: the index

I Differential Algebraic Equations systems (continuous time) may involve
more constraints than specified:

{
ẋ = f (x , u)
0 = g(x)

differentiating
=⇒

 ẋ = f (x , u)
0 = g(x)
0 = g′x(x)ẋ

substituting
=⇒

 ẋ = f (x , u) (1)
0 = g(x) (2)
0 = g′x(x)f (x , u) (3)

I What is the effect on execution schemes? (∼ constructive semantics)
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A key notion in DAE Systems: the index

I difference Algebraic Equations systems (discrete time) may involve
more constraints than specified:

{
x• = f (x , u)
0 = g(x)

shifting
=⇒

 x• = f (x , u)
0 = g(x)
0 = g(x•)

substituting
=⇒

 x• = f (x , u) (1)
0 = g(x) (2)
0 = g(f (x , u)) (3)
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A key notion in DAE Systems: the index

I difference Algebraic Equations systems (discrete time) may involve
more constraints than specified:

{
x• = f (x , u)
0 = g(x)

shifting
=⇒

 x• = f (x , u)
0 = g(x)
0 = g(x•)

substituting
=⇒

 x• = f (x , u) (1)
0 = g(x) (2)
0 = g(f (x , u)) (3)

I Execution scheme (∼ constructive semantics):

1. Given x such that g(x) = 0
2. Use (3) to evaluate u (constraint solver needed)
3. Use (1) to evaluate x•, which satisfies g(x•) = 0, and repeat

Adding (3) essential in deriving the constructive semantics x → x•
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A key notion in DAE Systems: the index

I difference Algebraic Equations systems (discrete time) may involve
more constraints than specified:

{
x• = f (x , u)
0 = g(x)

shifting
=⇒

 x• = f (x , u)
0 = g(x)
0 = g(x•)

shifting2

=⇒


x• = f (x , u) (1)
0 = g(x) (2)
0 = g(x•) (3)
0 = g(x•2) (4)

I Shifting2 is useless since the second shifting introduces

1. eqn (4) but also
2. the fresh variable x•2

Thus, adding (4) does not help getting the value of x•
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A key notion in DAE Systems: the index

I difference Algebraic Equations systems (discrete time) may involve
more constraints than specified:

{
x•2 = f (x , u)
0 = g(x)

shifting
=⇒

 x•2 = f (x , u)
0 = g(x)
0 = g(x•)

shifting2

=⇒


x•2 = f (x , u) (1)
0 = g(x) (2)
0 = g(x•) (3)
0 = g(x•2) (4)

I Shifting2 is useful since the second shifting introduces

1. eqn (4) and
2. the variable x•2, which is not fresch but already there
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A key notion in DAE Systems: the index

I Differential Algebraic Equations systems (continuous time) may involve
more constraints than specified:

{
ẋ = f (x , u)
0 = g(x)

differentiating
=⇒

 ẋ = f (x , u)
0 = g(x)
0 = g′x(x)ẋ

substituting
=⇒

 ẋ = f (x , u) (1)
0 = g(x) (2)
0 = g′x(x)f (x , u) (3)

seen as
=⇒

{
ẋ = f (x , u) (1)
0 = G(x , u) (2, 3)

I ∼ ODE if we have a constraint solver getting x → u from (2,3)
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A key notion in DAE Systems: the index

[
differentiations
shiftings

]
make

[
DAE
dAE

]
becoming

[
ODE

TS

]
-like

(TS: transition system)

Define the index as being the minimal number of[
differentiations
shiftings

]
needed until

[
no further differentiation
no further shifting

]
can reveal additional latent constraints

The notion of differentiation index emerged in the late 1980’s in the applied mathematics
community; other notions of index were proposed, see [Campbell & Gear 1995]

5 / 29



Research Agenda

I So-called index reduction is a front processing of models
making DAE/dAE looking like known objects;

I The execution requires a constraint solver but no further deep
forward exploration of runs is needed (warning: the index may be infinite)

I Unfortunately, no notion of index was mathematically defined
for Hybrid DAE systems

I it is informally claimed that
“Hybrid DAE systems possess a mode-dependent index”

I unfortunately this has no math basis and leads to problems
at compilation: what to do at mode changes?

I This talk is about index for Hybrid DAE systems and it turns out that
index for dAE systems is also interesting in itself
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Exact and Structural DAE index (linear algebra reasoning)

Structural dAE index and causality analysis

Through NonStandard semantics DAE become dAE

The index of a Hybrid DAE System is the dAE index of its NS-semantics

Consequences for simulation

Conclusions
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Exact Differentiation/Difference Index F (x , ẋ) = 0
F (x , x•) = 0


F (x , ẋ)

d
dt F (x , ẋ)

...x , ẋ)
dk

dtk F (x , ẋ)

 =def

Fk (x,v,w)︷ ︸︸ ︷
F (0)(x , ẋ ,w)
F (1)(x , ẋ ,w)

...x , ẋ ,w)
F (k)(x , ẋ ,w)

 ,
{

v =def ẋ
w =def (x (2), . . . , x (k+1))


F (x , x•)

F•(x , x•)
..., x•)

F•k (x , x•)

 =def


F (0)(x , x•,w)
F (1)(x , x•,w)

..., x•,w)
F (k)(x , x•,w)


︸ ︷︷ ︸

Fk (x,v,w)

,
{

v =def x•

w =def (x•2, . . . , x•k+1)

Index =def min k s.t. x → v : ∃w .Fk (x , v ,w) = 0 is a partial function

solving Fk = 0 while eliminating w uniquely determines v as a partial function of x
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The case of smooth systems (F smooth)

Index =def min k s.t. x → v : ∃w .Fk (x , v ,w) = 0 is a partial function

Whence the following questions of interest if F is smooth:

1. does x → v : ∃w .F (x , v ,w) = 0 define a partial function?

⇔ (by implicit function theorem)

2. does x → v : ∃w .Av + Cw + Ex = 0 define a partial function?

where A = F ′v ,C = F ′w ,E = F ′x are Jacobians at a solution (vo,wo, xo)
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Index =def min k s.t. x → v : ∃w .Fk (x , v ,w) = 0 is a partial function

Whence the following questions of interest if F is smooth:

1. does x → v : ∃w .F (x , v ,w) = 0 define a partial function?

⇔ (by implicit function theorem)

2. does x → v : ∃w .Av + Cw + Ex = 0 define a partial function?

where A = F ′v ,C = F ′w ,E = F ′x are Jacobians at a solution (vo,wo, xo)

We are interested in structural properties, i.e., properties that are valid
outside exceptional values for the nonzero coefficients of the matrices
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The case of smooth systems (F smooth)

Subcase Av + x = 0 with A a square matrix: A structurally invertible
⇔ ∃P permutation matrix such that PA has a nonzero diagonal

P =

 0 1 0
0 0 1
1 0 0

 ,A =

 a11 a12 a13

a21 0 a23

a31 a32 0

 ,PA =

 a21 0 a23

a31 a32 0
a11 a12 a13


A is structurally invertible. It may be singular for exceptional values of the nonzero
coefficients of A, e.g., if det(A) = a31a12a23 − a32(a11a23 − a21a13) = 0.

Finding P amounts to pivoting, which is a graph based algorithm:

reorder equations, and then
use the k th equation to eliminate vk as a function of x and {vj | j>k}

does x → v : ∃w .Av + Cw + Ex = 0 define a partial function,
almost everywhere when the nonzero coefficients of A,C,E vary
over some neighborhood?
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
A is structurally invertible. It may be singular for exceptional values of the nonzero
coefficients of A, e.g., if det(A) = a31a12a23 − a32(a11a23 − a21a13) = 0.

I A similar result holds for structural properties of
x → v : ∃w .Av + Cw + Ex = 0

which also leads to a graph based algorithm

does x → v : ∃w .Av + Cw + Ex = 0 define a partial function,
almost everywhere when the nonzero coefficients of A,C,E vary
over some neighborhood?
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The case of smooth systems (F smooth)

{
0 = ẋ − f (x , u)
0 = g(x)

set S(x , v) =def

[
ẋ − f (x , u)
g(x)

]
where x is the state and v =def (ẋ , u); consider the Jacobian

J =def dS/dv =

[
1 −f ′u(x , u)
0 0

]
is structurally singular

v cannot be determined and S has index > 0. Set w = (ẍ , u̇) and consider

S1(x , v ,w) =def

[
S(x , v)
d
dt S(x , v ,w)

]
=


ẋ − f (x , u)
g(x)
g′(x)ẋ
ẍ − d

dt f (x , u)

 ⇒
 ẋ − f (x , u)

g(x)
g′(x)ẋ



J1 =def dS1/dv =

 1 −f ′u(x , u)
0 0
1 0

⇒ [
1 −f ′u(x , u)
1 0

]
invertible
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The case of smooth systems (F smooth)

 E1 : 0 = ẋ − f (x , u)•

E2 : 0 = g(x)
E3 : 0 = g′(x)ẋ

E1

E2

E3

x

u

ẋ

E1

E2

E3

x

u

ẋ

structural pivoting
(Pantelides algorithm)

⇔ searching for a consistent orientation
of the incidence graph

Pantelides algorithm ⇔ causality analysis for constraint system
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Exact and Structural DAE index (linear algebra reasoning)
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Through NonStandard semantics DAE become dAE

The index of a Hybrid DAE System is the dAE index of its NS-semantics
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The need for guards

 E1 : 0 = x• − f (x , u)
E2 : 0 = g(x)
E3 : 0 = g(x•)

E1

E2

E3

x

u

x•

E1

E2

E3

x

u

x•

Abstraction Principle: in F (x , u, v)=0, any of x , u, v can be turned to an output

This is a legitimate consequence of implicit function theorem if F is smooth
What if F is not smooth? e.g., it involves “if-then-else” or guards
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The need for guards

E(x , u, v) : b = [x>0]
∧

if b then v=f (u) else u=g(v)

x

u

x•

x

u

x•

E E

Brute force application of the Abstraction Principle yields an incorrect abstraction
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The need for guards

E(x , u, v) : b = [x>0]
∧

if b then v=f (u) else u=g(v)

x

u

x•

x

u

x•

E E

b = true
b = false

PE(x , u, v) : x—b
∧

if b then u—v else u—v

~PE(x , u, v) : x→b
∧

if b then u→v else v→u
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The need for guards

Refined formalism: guarded equations (we consider flat guards only)

S =
(∧

i Ai ,
∧

j Ej

)
where

Ai = predicate over the set of guards bj

Ej = if bj then Fj(x , u, x•) and Abstraction Principle applies to F

PEj = bj → Ej
∧

if bj then u

x

x•
Fj

Compute a directed covering ~PEj of PEj ensuring

I single assignment modulo assertions on guards

I circuitfreeness modulo assertions on guards

An extension of Signal clock-and-causality calculus; yields constructive semantics
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Guards are not enough

Unilateral Constraints
(multi-body mechanics)

}
: 0 ≤ g(x)

Complementarity Conditions
(circuits with perfect diodes)

(multi-body mechanics)

 : 0 ≤ U(x) ⊥ V (y) ≥ 0 ≡

 U(x) ≥ 0
V (y) ≥ 0

U(x)V (y) = 0

{
x• = f (x , u)
0 ≤ g(x)

expands as⇒

 E1 : x• = f (x , u)
E21 : b = [0≥g(x)]
E22 : if b then g(x)=0

I Problem: {E21,E22} is a fixpoint equation in (b, x)

I Approach:

1. See E2 = {E21,E22} as an atom handled like a single equation
2. Assign to E2 a set of candidate causality constraints
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Summary on dAE causality analysis

Causality analysis (from which the index follows):
I Guarded equations with assertions on guards
I Guarded causality analysis
I Atoms

I Warning: “atom” indicates that it must be evaluated at once
I Atoms may not be small (minimal circuits in the causality graph)

Constructive semantics and execution schemes
I Execution mode of synchronous languages, albeit
I Evaluating atoms requires dedicated constraint solvers
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Exact and Structural DAE index (linear algebra reasoning)

Structural dAE index and causality analysis

Through NonStandard semantics DAE become dAE

The index of a Hybrid DAE System is the dAE index of its NS-semantics

Consequences for simulation

Conclusions
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Through NonStandard semantics DAE become dAE

T =def {tn = n∂ | n ∈ ?Z} where ∂ is an infinitesimal

∀t ∈ T : •t• =def max{s | s ∈ T, s < t} = t − ∂

t• =def min{s | s ∈ T, s > t} = t + ∂

ẋt =def
xt• − xt

∂
(explicit scheme)

(
xt − x•t

∂
(implicit scheme)

)


x
d
dt x

d2

dt2 x
...

 = L


x
x•

x•2
...

 , where L is an invertible lower triangular matrix

Theorem: structural index of a DAE = structural index of its NS-semantics
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A conservative extension of the index

index of Hybrid DAE System =def dAE index of its NS-semantics

I By the previous Theorem this yields a conservative extension of

I the index of a DAE system
I the index of a dAE system

I Warning: the above result requires considering the structural index
(not the exact one)

I The computation of the index is a byproduct of the causality analysis

I The index is a global notion (the index may be finite or infinite)

I The causality analysis is guarded, i.e., mode dependent
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A conservative extension of the index

We can perform causality analysis for the following kind of example:

ONi OFFi 0 ≤ U−|ui | ⊥ |ji | ≥ 0|ji | < Ji ; 0=ui
|ji |≥Ji

j2

u1

j1

j

u2

V
v1 v2

w

L

F1

R

F2

L2

A simple circuit breaker. Top: the circuit. Bottom: the mode automaton for each fuse
i = 1, 2. For the ON mode, the current must stay below a threshold Ji , while in the OFF
mode, the complementarity condition shown holds.

18 / 29



Exact and Structural DAE index (linear algebra reasoning)
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Simulating dAE systems (discrete time)

Not much to be said:

I Guarded causality analysis yields the constructive semantics

I Not very different from synchronous languages, albeit. . .

I Solvers are needed to evaluate every atom (local call to solver)
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Simulating Hybrid DAE systems (continuous time)

synchronous
mode of exec

reset

numerical solver

event

event event handler

end of cascade of events

event

step:

∼FMU
∼s-funct
∼call solver

This is the technique of slicing used in Zelus tool [Pouzet & Bourke]

I synchronous mode of execution: may require the use of solvers for
evaluating atoms

I step: a step may have “long” duration, e.g., the solver may be stopped only
at the next zero-crossing
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Simulating Hybrid DAE systems (continuous time)

Difficulties with this technique of slicing :

I Can the evaluation of step consist of local calls to a solver for each block?
(this holds true for for dAE)

I No if the different blocks must interact while performing step{
ẋ = f (x , y)

ẏ = g(x , y)

x

y

I Yes otherwise
I Ok if “slow interactions”: f (x , y) ≈ f (x , y0) or g(x , y) ≈ g(x0, y)

I What should be considered as an event?

I Some but not all discontinuities (next slides)
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What should be considered as an event?
Some numerical solvers ignore discontinuities (B. Caillaud at Synchron’13):

Moreau sweeping process: Its numerical scheme:
A cavity moves Fixed step size; no event handler

and pushes the ball Only convex projections

This applies to unilateral constraints and complementarity conditions

Since such solvers are not bothered by discontinuities, it is subtle to decide

I which discontinuities to detect for handling as an event vs.

I which discontinuities to ignore and delegate to the solver
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Current status for Hybrid DAE System modeling tools

General scope tools for engineering (e.g., Modelica):

I Spurious behaviors may be encountered when handling events
(cascades of)

I Discontinuities are handled as events

I unless the engineer manually enforces the use of certain
event-agnostic discretization schemes

I Causality analysis is mode-dependent

I Still, separately compiled blocks (e.g., targeting FMU) must have an
interface with static (mode-independent) causality

I No local solvers

I unless manually enforced (e.g., for slow/fast dynamics)
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Current status for Hybrid DAE System modeling tools

Solvers dedicated to nonsmooth systems (e.g., Siconos library [Acary & Brogliato])

I eventless and event based processing both supported

I global solvers

I complementarity conditions with linear coupling

I no index reduction; replaced by the evaluation of the “relative degree”
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The index of a Hybrid DAE System is the dAE index of its NS-semantics

Consequences for simulation

Conclusions

25 / 29



We have formally defined the index for Hybrid DAE

I Index of Hybrid DAE =def index of its NonStandard semantics

(Yet another evidence that NonStandard semantics helps. . . )

I Requires guarded causality analysis alike in synchronous languages
(particularly Signal)

I Allows giving a mathematical semantics to more Hybrid DAE systems
(of little help if the index is infinite)
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dAE Systems are interesting

dAE Systems with general data types (e.g. Bool = numerics):

I Extend synchronous programming to Transition Systems where transition
relations (constraints) are specified via systems of equations

I Guarded equations with atoms form an expressive syntax

I Index analysis for dAE is new (though an easy translation from DAE):

I relies on guarded causality analysis
I when the index is finite, index reduction identifies the look-ahead

horizon that is sufficient to avoid future blocking

I Requires constraint solvers (no all purpose solver exists. . . )

What are dAE Systems useful for?
I model-guided testing?
I planification?
I . . . ?
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Hybrid DAE Systems are more difficult than dAE Systems

I Index-and-causality analysis is a symbolic pre-processing
It does not address numerical difficulties

I Making a step is more difficult than calling an S-function

I Global vs. Distributed solvers

I Global solver is normally used for simulation
I Distributed solvers are used:

I in code coupling (e.g. multi-physics)
I in slow/fast dynamics
I in FMI based simulation with several FMU

I What to do with events?

I Handling every discontinuity as an event is not good
I Handling no discontinuity as an event is not good either
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an exciting but difficult subject
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