A General Approach of Infeasibility in ILP-based WCET Estimation Methods

Pascal Raymond

Verimag/CNRS Grenoble-Alpes University

SYNCHRON14, Aussois, Dec. 2014

Presented at EMSOFT 14 Supported by the French ANR project W-SEPT

WCET estimation _____

Principles

- Computes a safe upper bound to the worst case execution time
- Relevance: performed at the binary level, for a know architecture
- Main problems/challenges for accuracy:
 - \hookrightarrow Precise modeling of the micro-architecture
 - \hookrightarrow Reject infeasible executions

State of the art organization

- Input: Control Flow graph (CFG) of the binary code, whose vertices are Basic Blocks of sequential instructions (BB)
- Mainly 3 steps:
 - → Data-flow analysis: find semantic information, in order to prune infeasible executions, at least: find loop bounds to reject infinite executions
 - → Micro-architecture analysis: mainly local to avoid intractability, assigns local "weights" to each BB and/or transition (expressed in CPU cycles)
 - → Search of the worst (heaviest) path in the CFG annotated with the local weights
 Here: we focus on this step
- Implicit Path Enumeration Technique:
- \hookrightarrow Encodes Path search as a numerical optimization problem
- \hookrightarrow Use Integer Linear Programming (ILP) techniques

• μ -archi analysis has assigned weights

• μ -archi analysis has assigned weights e.g. $w_a = 26, w_b = 72$ etc.

- μ -archi analysis has assigned weights e.g. $w_a = 26, w_b = 72$ etc.
- data-flow analysis has found loop bounds 'h' taken at most n times

- μ -archi analysis has assigned weights e.g. $w_a = 26, w_b = 72$ etc.
- data-flow analysis has found loop bounds 'h' taken at most n times
- ILP encoding:

- μ -archi analysis has assigned weights e.g. $w_a = 26, w_b = 72$ etc.
- data-flow analysis has found loop bounds 'h' taken at most n times
- ILP encoding:

etc.

 $\begin{array}{l} \hookrightarrow \text{Structural constraints} \\ a+d=1 \\ g=a+d \\ g+k=p+h \end{array}$

- μ -archi analysis has assigned weights e.g. $w_a = 26, w_b = 72$ etc.
- data-flow analysis has found loop bounds 'h' taken at most n times
- ILP encoding:
 - → Structural constraints

$$a + d = 1$$

 $g = a + d$
 $g + k = p + h$
etc.

 $\stackrel{{\scriptstyle \hookrightarrow}}{\to} {\rm Semantic \ constraints} \\ h \leq n$

- μ -archi analysis has assigned weights e.g. $w_a = 26, w_b = 72$ etc.
- data-flow analysis has found loop bounds 'h' taken at most n times
- ILP encoding:
 - → Structural constraints

$$a + d = 1$$

$$g = a + d$$

$$g + k = p + h$$

etc.

 $\stackrel{{\scriptstyle \hookrightarrow}}{\underset{\scriptstyle h \ \leq \ n}{\scriptstyle Semantic \ constraints}}$

 \hookrightarrow Objective function MAX $(\sum_{x \in \mathcal{E}} w_x x)$

- μ -archi analysis has assigned weights e.g. $w_a = 26, w_b = 72$ etc.
- data-flow analysis has found loop bounds 'h' taken at most n times
- ILP encoding:
 - → Structural constraints

$$a + d = 1$$

$$g = a + d$$

$$g + k = p + h$$

etc.

 $\stackrel{\longleftrightarrow}{\rightarrow} {\rm Semantic\ constraints} \\ h \leq n$

$$\hookrightarrow$$
 Objective function
MAX $(\sum_{x \in \mathcal{E}} w_x x)$

Interest ? against (e.g.) graph traversal techniques ?

- μ -archi analysis has assigned weights e.g. $w_a = 26, w_b = 72$ etc.
- data-flow analysis has found loop bounds 'h' taken at most n times
- ILP encoding:
 - → Structural constraints

$$a + d = 1$$

$$g = a + d$$

$$g + k = p + h$$

etc.

 $\stackrel{{\scriptstyle \longleftrightarrow}}{\rightarrow} {\rm Semantic \ constraints} \\ h \leq n$

 \hookrightarrow Objective function MAX $(\sum_{x \in \mathcal{E}} w_x x)$

 ϵ 26 5 а d g р 5 $h \leq n$ 72 b е 5 k 32 68 f С

Interest ? against (e.g.) graph traversal techniques ?

 \hookrightarrow Yes, as far as *infeasibility constraints* can be found/expressed

Infeasibility constraints

```
if (init) {
/* a */
\} else \{
 /* d */
}
for ( i =0; i <n; i ++){</pre>
 if (Y[i]) {
 cond = not init and Z[i];
 /* b */
 } else {
  cond = true;
  /* e */
 }
 /* ... */
 if (cond){
 /* C */
 \} else \{
  /* f */
```

Infeasibility constraints

```
if (init) {
/* a */
} else {
 /* d */
for(i=0;i<n;i++){
 if (Y[i]) {
 cond = not init and Z[i];
 /* b */
 } else {
  cond = true;
 /* e */
 /* ... */
 if (cond){
 /* C */
 } else {
  /* f */
```

- $\bullet\,$ for each iteration, edges e and f are incompatible
 - \hookrightarrow notion of conflicting pair
 - \hookrightarrow largely used in literature
 - \hookrightarrow restricted to simple scopes

```
\hookrightarrow here: e + f \leq n
```

Infeasibility constraints

```
if (init) {
 /* a */
} else {
 /* d */
for(i=0;i<n;i++){
 if (Y[i]) {
  cond = not init and Z[i];
 /* b */
 } else {
  cond = true;
  /* e */
    ... */
 /*
 if (cond){
  /* C */
 /* f */
```

- for each iteration, edges e and f are incompatible
 - \hookrightarrow notion of conflicting pair
 - \hookrightarrow largely used in literature
 - \hookrightarrow restricted to simple scopes

 \hookrightarrow here: $e + f \leq n$

- $\bullet \ a$ makes b and c incompatible at each iteration
 - \hookrightarrow 3 edges involved, conflict across loop scope...
 - \hookrightarrow hardly treated in literature ...
 - ... without modifying (unfolding) the graph
 - \hookrightarrow however, ad hoc reasoning gives:

 $na+b+c\leq 2n$

State of the art:

- Almost all IPET related work use extra constraints to prune infeasible path
- Mix two problems: find the properties and express them in ILP
- Mainly focus on particular properties (e.g. pairwise edge exclusion), holding for particular scopes (e.g. intra-loop), leading to particular constraint shapes (e.g. bounded sums)
- since the goal is WCET enhancement, often completed with graph transformation methods

State of the art:

- Almost all IPET related work use extra constraints to prune infeasible path
- Mix two problems: find the properties and express them in ILP
- Mainly focus on particular properties (e.g. pairwise edge exclusion), holding for particular scopes (e.g. intra-loop), leading to particular constraint shapes (e.g. bounded sums)
- since the goal is WCET enhancement, often completed with graph transformation methods

The problem faced here:

- don't consider the discovery of the properties, only their expression in ILP
- how to: characterize pruning constraints ? express them with ILP ?
- remain abstract: as far as possible only reason on *numbers*, not on program shape/pattern
- explore the limits of ILP formulation: graph transformation forbidden

Formalization _

Programs, traces and executions

- a program P = CFG = vertices + edges + start + exit
 edges are named a,b,c etc.
- trace = path from start to exit = sequence of edges $\mathcal{T}(P)$ = set of P traces
- for any $t \in \mathcal{T}(P)$, $|a|_t$ = number of occurrence of a in tn.b. depending on the context, we often simply note a for $|a|_t$
- $\mathcal{E} \subseteq \mathcal{T}(P)$ = real/exact set of (bounded) executions (i.e. $\mathcal{T}(P) \setminus \mathcal{E}$ = set of infeasible executions)

Unfoldings

- Formalize the notion of "more precise CFG"
- U a CFG, δ a mapping from U edges to P edges let a be a P edge, a_1, a_2, \cdots be the U edges s.t. $\delta(a_i) = a$ (let's call them the *avatars* of a
- Let $\mathcal{T}^{\delta}(U)$ = set of (decoded) traces of U
- (U,δ) is an unfolding of P iff:

$$\mathcal{E} \subseteq \mathcal{T}^{\delta}(U) \subseteq \mathcal{T}(P)$$

• From now on: only consider ACYCLIC unfoldings

N.B. This is (virtually) what we have with a CFG + loop bounds

Unfolding and ILP

- $\{x_1, \cdots, x_n\}$ = avatars of x
- m_x = # of x avatars
- For any trace $t \in \mathcal{T}(U)$ $\hookrightarrow \text{let } t' = \delta(t) \in \mathcal{T}(P)$

 \hookrightarrow then for any edge x:

 $|x|_{t'} = \sum_{i=1}^{m_x} |x_i|_t$

 \hookrightarrow or (simplified notation):

 $x = \sum x_i$

• Moreover, for any x_i :

(acyclic property)

 $0 \le x_i \le 1$

Conflict and completion (example)

- On the unfolding: n (avatar) edges are conflicting if no execution where they are all taken is feasible
- N.B. Any set of infeasible paths can be expressed as a conjunction of conflicts
 - \hookrightarrow It explains why we only focus on conflicts (see paper)
- For instance (example):

 $\{e_1, f_1\}, \dots \{e_n, f_n\}$ are conflicting sets (all for the "same reason") $\{a_1, b_1, c_1\}, \dots \{a_1, b_n, c_n\}$ are conflicting sets (all for the "same reason")

• Conflict to ILP, at unfolding level is trivial, e.g.:

$$\hookrightarrow \forall i = 1 \cdots n, e_i + f_i \le 1$$

$$\hookrightarrow \forall i = 1 \cdots n, \ a_1 + b_i + c_i \le 2$$

• Erase avatar details by summing all constraints, e.g.:

$$\hookrightarrow \sum_{i=1}^{n} (e_i + f_i) = e + f \le 1n$$

$$\hookrightarrow \sum_{i=1}^{n} (a_1 + b_i + c_i) = na + b + c \le 2n$$

Towards a general result ?

Conflict and completion (general 3-edges case)

- Sake of simplicity: case of 3 (concrete) edges, a, b, c
- Suppose existence of a (suitable) acyclic unfolding: keep it abstract, reason about numbers only !
 - \hookrightarrow Numbers of avatars: m_a , m_b , m_c avatars
 - \hookrightarrow Size of the conflict:

a set S of s conflicting avatar triples (i,j,k), i.e. such that $a_i+b_j+c_k\leq 2$

• The sum of constraints gives:

 $\sum_{(i,j,k)\in S} (a_i + b_j + c_k) \le 2s$

• Problem: complete this constraint to obtain full versions of a, b, c?

A (very) bad solution: rough completion

- Let $m = m_a * m_b * m_c$ the number of avatar triples,
- there are *s* conflicting triples,
- and thus m-s non-conflicting triples, satisfying the (trivial) constraint: $a_i + b_j + c_k \leq 3$
- leading to the non-conflict constraint:

$$\sum_{(i,j,k)\notin S} (a_i + b_j + c_k) \le 3(m-s)$$

• Summing conflict and non-conflict constraints gives the formula:

$$\sum_{\substack{(i,j,k) \notin S}} (a_i + b_j + c_k) \leq 3(m - s)$$
$$+ \sum_{\substack{(i,j,k) \in S}} (a_i + b_j + c_k) \leq 2s$$

$$m_b m_c a + m_a m_c b + m_a m_b c \le 3m - s$$

Likely to be very imprecise !

Formalization

Precise completion _____

Multiplicity

• Conflict constraint is (also) of the form:

$$\sum_{i=1}^{m_{a}} \alpha_{i} a_{i} + \sum_{j=1}^{m_{b}} \beta_{j} b_{j} + \sum_{k=1}^{m_{c}} \gamma_{k} c_{k} \le 2s$$

- Idea: add as few useless constraints ($a_i \leq 1$) to obtain complete "versions" of a
- focus on the a term ($\sum_{i=1}^{m_a} \alpha_i a_i$):
 - \hookrightarrow sum of coefs is $\sum_{i=1}^{m_a} \alpha_i = s$
 - \hookrightarrow the biggest α_i is the multiplicity of a, noted p_a how many time MAX the whole edge is involved
 - \hookrightarrow In a precise solution, the "whole" *a* must appear p_a times, AND NOT MORE!

Lack

- We need p_a times a in the constraint, thus a total of $p_a m_a$ avatars
- It's does not matter which avatars are missing, only their number matters: the *lack of a* in the conflict = $\ell_a = p_a m_a - s$
- Conclusion: adding ℓ_a to the right-hand side, allows to replace all a_i details by $p_a a$ in the left hand side

Summary

In order to get a precise ILP formulation of a conflict, one has to identify:

- For each edge, its number of "avatars" m_a , in a suitable unfolding of the program (kept largely virtual),
- The size of the conflict, s: the number of conflicting avatars
- For each edge, its multiplicity p_a : the number of times the edge is "involved" in the conflict,

from which we compute the lack $\ell_a = p_a m_a - s$ etc.

• Then, the following ILP constraint holds:

$$p_a a + p_b b + p_c c \le 2s + \ell_a + \ell_b + \ell_c$$

n.b. the generalization to any number of conflicting edges is straightforward e.g. case for 2 edges:

$$p_a a + p_b b \le s + \ell_a + \ell_b$$

Examples _

Example program of the beginning

- $\{e, f\}$ conflict:
 - \hookrightarrow loop bounds give $m_e = m_f = n$, conflict holds s = n times
 - \hookrightarrow each avatar involved once, thus $p_e = p_f = 1$ and $\ell_e = \ell_f = 0$
 - \hookrightarrow finally: $e + f \leq n$
- $\{a, b, c\}$ conflict:

 $\hookrightarrow m_a = 1, m_b = m_c = n$, conflict holds s = n times

- $\hookrightarrow a$ involved n times, b and c once, thus $p_a=n, \, p_b=p_c=1$ and $\ell_a=\ell_b=\ell_c=0$
- $\hookrightarrow \text{ finally: } na + b + c \leq 2n$

Example with lack

- Similar to the previous {a, b, c}, except that b and c conflict on consecutive iterations
 i.e. {a₁, b₂, c₁}, {a₁, b₃, c₂} etc.
- $m_a = 1$, $m_b = m_c = n$, conflict holds s = n 1 times

•
$$p_a=n-1$$
, thus $\ell_a=p_am_a-s=0$

•
$$p_b = p_c = 1$$
, thus $\ell_b = \ell_c = p_b m_b - s = 1$

- right hand side is: $2s + \ell_a + \ell_b + \ell_c = 2(n-1) + 2 = 2n$

• finally:
$$(n-1)a + b + c \le 2n$$

Auto-conflict

- An edge a within a loop conflict with the same edge at the next iteration
- Case covered by the formula: just keep in mind that a plays TWO roles
 i.e. apply the a, b formula, keeping in mind that a = b
- $m_a = m_b = n, s = n 1$
- $p_a = p_b = 1, \, \ell_a = \ell_b = 1$
- thus: $a + b \le n 1 + 1 + 1 = n + 1$
- and since a = b: $2a \le n+1$

Examples _

Conclusion _____

- Explores the ability of ILP methods to express infeasibility
- Shows that infeasibility can be expressed as a conjunction of conflicting constraints
- Propose a general method, requiring to "numerically" characterize the conflicts
- Mainly a theoretical work,
- however, helps to understand/classify/compare existing concrete methods
- Open problem: can it help to develop/enhance actual methods ?