
A General Approach of Infeasibility in

ILP-based WCET Estimation Methods

Pascal Raymond

Verimag/CNRS

Grenoble-Alpes University

SYNCHRON14, Aussois, Dec. 2014

Presented at EMSOFT 14

Supported by the French ANR project W-SEPT

WCET estimation

Principles

• Computes a safe upper bound to the worst case execution time

• Relevance: performed at the binary level, for a know architecture

• Main problems/challenges for accuracy:

↪→ Precise modeling of the micro-architecture

↪→ Reject infeasible executions

WCET estimation 1/16

State of the art organization

• Input: Control Flow graph (CFG) of the binary code, whose vertices are Basic Blocks

of sequential instructions (BB)

• Mainly 3 steps:

↪→ Data-flow analysis: find semantic information, in order to prune infeasible

executions, at least: find loop bounds to reject infinite executions

↪→ Micro-architecture analysis: mainly local to avoid intractability, assigns local

“weights” to each BB and/or transition (expressed in CPU cycles)

↪→ Search of the worst (heaviest) path in the CFG annotated with the local weights

Here: we focus on this step

• Implicit Path Enumeration Technique:

↪→ Encodes Path search as a numerical optimization problem

↪→ Use Integer Linear Programming (ILP) techniques

WCET estimation 2/16

ILP encoding on an example

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

WCET estimation 3/16

ILP encoding on an example

5
50 72

6832

5 7

7

15 26e.g. wa = 26, wb = 72 etc.

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

WCET estimation 3/16

ILP encoding on an example

• data-flow analysis has found loop bounds
’h’ taken at most n times

≤ n

5
50 72

6832

5 7

7

15 26e.g. wa = 26, wb = 72 etc.

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

WCET estimation 3/16

ILP encoding on an example

• ILP encoding:

• data-flow analysis has found loop bounds
’h’ taken at most n times

≤ n

5
50 72

6832

5 7

7

15 26e.g. wa = 26, wb = 72 etc.

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

WCET estimation 3/16

ILP encoding on an example

↪→ Structural constraints
a+ d = 1
g = a+ d
g + k = p+ h
etc.

• ILP encoding:

• data-flow analysis has found loop bounds
’h’ taken at most n times

≤ n

5
50 72

6832

5 7

7

15 26e.g. wa = 26, wb = 72 etc.

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

WCET estimation 3/16

ILP encoding on an example

↪→ Semantic constraints
h ≤ n

↪→ Structural constraints
a+ d = 1
g = a+ d
g + k = p+ h
etc.

• ILP encoding:

• data-flow analysis has found loop bounds
’h’ taken at most n times

≤ n

5
50 72

6832

5 7

7

15 26e.g. wa = 26, wb = 72 etc.

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

WCET estimation 3/16

ILP encoding on an example

↪→ Objective function
MAX(

∑
x∈E wxx)

↪→ Semantic constraints
h ≤ n

↪→ Structural constraints
a+ d = 1
g = a+ d
g + k = p+ h
etc.

• ILP encoding:

• data-flow analysis has found loop bounds
’h’ taken at most n times

≤ n

5
50 72

6832

5 7

7

15 26e.g. wa = 26, wb = 72 etc.

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

WCET estimation 3/16

ILP encoding on an example

Interest ? against (e.g.) graph traversal techniques ?

↪→ Objective function
MAX(

∑
x∈E wxx)

↪→ Semantic constraints
h ≤ n

↪→ Structural constraints
a+ d = 1
g = a+ d
g + k = p+ h
etc.

• ILP encoding:

• data-flow analysis has found loop bounds
’h’ taken at most n times

≤ n

5
50 72

6832

5 7

7

15 26e.g. wa = 26, wb = 72 etc.

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

WCET estimation 3/16

ILP encoding on an example

↪→ Yes, as far as infeasibility constraints can be found/expressed
Interest ? against (e.g.) graph traversal techniques ?

↪→ Objective function
MAX(

∑
x∈E wxx)

↪→ Semantic constraints
h ≤ n

↪→ Structural constraints
a+ d = 1
g = a+ d
g + k = p+ h
etc.

• ILP encoding:

• data-flow analysis has found loop bounds
’h’ taken at most n times

≤ n

5
50 72

6832

5 7

7

15 26e.g. wa = 26, wb = 72 etc.

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

WCET estimation 3/16

Infeasibility constraints

i f (i n i t) {
/∗ a ∗ /
} else {

/∗ d ∗ /
}
for (i =0; i<n; i ++){

i f (Y[i]) {
cond = not i n i t and Z[i] ;
/∗ b ∗ /
} else {

cond = true ;
/∗ e ∗ /
}
/∗ . . . ∗ /
i f (cond){
/∗ c ∗ /
} else {

/∗ f ∗ /
}
}

WCET estimation 4/16

Infeasibility constraints

i f (i n i t) {
/∗ a ∗ /
} else {

/∗ d ∗ /
}
for (i =0; i<n; i ++){

i f (Y[i]) {
cond = not i n i t and Z[i] ;
/∗ b ∗ /
} else {

cond = true ;
/∗ e ∗ /
}
/∗ . . . ∗ /
i f (cond){
/∗ c ∗ /
} else {

/∗ f ∗ /
}
}

• for each iteration, edges e and f are incompatible

↪→ notion of conflicting pair

↪→ largely used in literature

↪→ restricted to simple scopes

↪→ here: e+ f ≤ n

WCET estimation 4/16

Infeasibility constraints

i f (i n i t) {
/∗ a ∗ /
} else {

/∗ d ∗ /
}
for (i =0; i<n; i ++){

i f (Y[i]) {
cond = not i n i t and Z[i] ;
/∗ b ∗ /
} else {

cond = true ;
/∗ e ∗ /
}
/∗ . . . ∗ /
i f (cond){
/∗ c ∗ /
} else {

/∗ f ∗ /
}
}

• for each iteration, edges e and f are incompatible

↪→ notion of conflicting pair

↪→ largely used in literature

↪→ restricted to simple scopes

↪→ here: e+ f ≤ n

• a makes b and c incompatible at each iteration

↪→ 3 edges involved, conflict across loop scope...

↪→ hardly treated in literature ...

... without modifying (unfolding) the graph

↪→ however, ad hoc reasoning gives:

na+ b+ c ≤ 2n

WCET estimation 4/16

State of the art:

• Almost all IPET related work use extra constraints to prune infeasible path

• Mix two problems: find the properties and express them in ILP

• Mainly focus on particular properties (e.g. pairwise edge exclusion), holding for

particular scopes (e.g. intra-loop), leading to particular constraint shapes (e.g.

bounded sums)

• since the goal is WCET enhancement, often completed with graph transformation

methods

WCET estimation 5/16

State of the art:

• Almost all IPET related work use extra constraints to prune infeasible path

• Mix two problems: find the properties and express them in ILP

• Mainly focus on particular properties (e.g. pairwise edge exclusion), holding for

particular scopes (e.g. intra-loop), leading to particular constraint shapes (e.g.

bounded sums)

• since the goal is WCET enhancement, often completed with graph transformation

methods

The problem faced here:

• don’t consider the discovery of the properties, only their expression in ILP

• how to: characterize pruning constraints ? express them with ILP ?

• remain abstract: as far as possible only reason on numbers, not on program

shape/pattern

• explore the limits of ILP formulation: graph transformation forbidden

WCET estimation 5/16

Formalization

Programs, traces and executions

• a program P = CFG = vertices + edges + start + exit

edges are named a,b,c etc.

• trace = path from start to exit = sequence of edges

T (P) = set of P traces

• for any t ∈ T (P), |a|t = number of occurrence of a in t

n.b. depending on the context, we often simply note a for |a|t

• E ⊆ T (P) = real/exact set of (bounded) executions

(i.e. T (P) \ E = set of infeasible executions)

Formalization 6/16

Unfoldings

• Formalize the notion of ”more precise CFG”

• U a CFG, δ a mapping from U edges to P edges

let a be a P edge, a1, a2, · · · be the U edges s.t. δ(ai) = a

(let’s call them the avatars of a

• Let T δ(U) = set of (decoded) traces of U

• (U, δ) is an unfolding of P iff:

E ⊆ T δ(U) ⊆ T (P)

• From now on: only consider ACYCLIC unfoldings

N.B. This is (virtually) what we have with a CFG + loop bounds

Formalization 7/16

Unfolding and ILP

(etc.)

χ

d a

g

h

k

l

be

cf

ε

χ

ε

χ

l2 χ

d1 a1

g1 l1
h1

e1 b1

c1f1

k1

h2

kn−1

en bn

cnfn

ln

• {x1, · · · , xn} = avatars of x

• For any trace t ∈ T (U)
↪→ let t′ = δ(t) ∈ T (P)

↪→ or (simplified notation):

↪→ then for any edge x:

|x|t′ =
∑mx

i=1 |xi|t

• Moreover, for any xi:

(acyclic property)

•mx = # of x avatars

x =
∑

xi

0 ≤ xi ≤ 1

Formalization 8/16

Conflict and completion (example)

• On the unfolding: n (avatar) edges are conflicting if no execution where they are all

taken is feasible

• N.B. Any set of infeasible paths can be expressed as a conjunction of conflicts

↪→ It explains why we only focus on conflicts (see paper)

• For instance (example):

{e1, f1}, ... {en, fn} are conflicting sets (all for the “same reason”)

{a1, b1, c1}, ... {a1, bn, cn} are conflicting sets (all for the “same reason”)

• Conflict to ILP, at unfolding level is trivial, e.g.:

↪→ ∀i = 1 · · ·n, ei + fi ≤ 1

↪→ ∀i = 1 · · ·n, a1 + bi + ci ≤ 2

• Erase avatar details by summing all constraints, e.g.:

↪→
∑n

i=1(ei + fi) = e+ f ≤ 1n

↪→
∑n

i=1(a1 + bi + ci) = na+ b+ c ≤ 2n

Towards a general result ?

Formalization 9/16

Conflict and completion (general 3-edges case)

• Sake of simplicity: case of 3 (concrete) edges, a, b, c

• Suppose existence of a (suitable) acyclic unfolding:

keep it abstract, reason about numbers only !

↪→ Numbers of avatars: ma, mb, mc avatars

↪→ Size of the conflict:

a set S of s conflicting avatar triples (i, j, k), i.e.

such that ai + bj + ck ≤ 2

• The sum of constraints gives:∑
(i,j,k)∈S(ai + bj + ck) ≤ 2s

• Problem: complete this constraint to obtain full versions of a, b, c ?

Formalization 10/16

A (very) bad solution: rough completion

• Let m = ma ∗mb ∗mc the number of avatar triples,

• there are s conflicting triples,

• and thus m− s non-conflicting triples, satisfying the (trivial) constraint:

ai + bj + ck ≤ 3

• leading to the non-conflict constraint:∑
(i,j,k)6∈S(ai + bj + ck) ≤ 3(m− s)

• Summing conflict and non-conflict constraints gives the formula:∑
(i,j,k) 6∈S

(ai + bj + ck) ≤ 3(m− s)

+
∑

(i,j,k)∈S

(ai + bj + ck) ≤ 2s

mbmc a+mamc b+mamb c ≤ 3m− s

Likely to be very imprecise !

Formalization 11/16

Precise completion
Multiplicity

• Conflict constraint is (also) of the form:∑ma

i=1 αiai +
∑mb

j=1 βjbj +
∑mc

k=1 γkck ≤ 2s

• Idea: add as few useless constraints (ai ≤ 1) to obtain complete “versions” of a

• focus on the a term (
∑ma

i=1 αiai):

↪→ sum of coefs is
∑ma

i=1 αi = s

↪→ the biggest αi is the multiplicity of a, noted pa
how many time MAX the whole edge is involved

↪→ In a precise solution, the “whole” a must appear pa times, AND NOT MORE!

Lack

• We need pa times a in the constraint, thus a total of pama avatars

• It’s does not matter which avatars are missing, only their number matters:

the lack of a in the conflict = `a = pama − s

• Conclusion: adding `a to the right-hand side, allows to replace all ai details by paa in the left

hand side

Precise completion 12/16

Summary

In order to get a precise ILP formulation of a conflict, one has to identify:

• For each edge, its number of “avatars” ma, in a suitable unfolding of the program

(kept largely virtual),

• The size of the conflict, s: the number of conflicting avatars

• For each edge, its multiplicity pa: the number of times the edge is “involved” in the

conflict,

from which we compute the lack `a = pama − s etc.

• Then, the following ILP constraint holds:

paa+ pbb+ pcc ≤ 2s+ `a + `b + `c

n.b. the generalization to any number of conflicting edges is straightforward

e.g. case for 2 edges:

paa+ pbb ≤ s+ `a + `b

Precise completion 13/16

Examples

Example program of the beginning

• {e, f} conflict:

↪→ loop bounds give me = mf = n, conflict holds s = n times

↪→ each avatar involved once, thus pe = pf = 1 and `e = `f = 0

↪→ finally: e+ f ≤ n

• {a, b, c} conflict:

↪→ ma = 1, mb = mc = n, conflict holds s = n times

↪→ a involved n times, b and c once, thus pa = n, pb = pc = 1 and

`a = `b = `c = 0

↪→ finally: na+ b+ c ≤ 2n

Examples 14/16

Example with lack

• Similar to the previous {a, b, c}, except that b and c conflict on consecutive iterations

i.e. {a1, b2, c1}, {a1, b3, c2} etc.

• ma = 1, mb = mc = n, conflict holds s = n− 1 times

• pa = n− 1, thus `a = pama − s = 0

• pb = pc = 1, thus `b = `c = pbmb − s = 1

• right hand side is: 2s+ `a + `b + `c = 2(n− 1) + 2 = 2n

• finally: (n− 1)a+ b+ c ≤ 2n

Auto-conflict

• An edge a within a loop conflict with the same edge at the next iteration

• Case covered by the formula: just keep in mind that a plays TWO roles

i.e. apply the a, b formula, keeping in mind that a = b

• ma = mb = n, s = n− 1

• pa = pb = 1, `a = `b = 1

• thus: a+ b ≤ n− 1 + 1 + 1 = n+ 1

• and since a = b: 2a ≤ n+ 1

Examples 15/16

Conclusion

• Explores the ability of ILP methods to express infeasibility

• Shows that infeasibility can be expressed as a conjunction of conflicting constraints

• Propose a general method, requiring to “numerically” characterize the conflicts

• Mainly a theoretical work,

• however, helps to understand/classify/compare existing concrete methods

• Open problem: can it help to develop/enhance actual methods ?

Conclusion 16/16

	WCET estimation
	Principles
	State of the art organization
	ILP encoding on an example
	Infeasibility constraints
	State of the art:
	The problem faced here:

	Formalization
	Programs, traces and executions
	Unfoldings
	Unfolding and ILP
	Conflict and completion (example)
	Conflict and completion (general 3-edges case)
	A (very) bad solution: rough completion

	Precise completion
	Multiplicity
	Lack
	Summary

	Examples
	Example program of the beginning
	Example with lack
	Auto-conflict

	Conclusion

