A General Approach of Infeasibility in
 ILP-based WCET Estimation Methods

Pascal Raymond
Verimag/CNRS
Grenoble-Alpes University

SYNCHRON14, Aussois, Dec. 2014

Presented at EMSOFT 14
Supported by the French ANR project W-SEPT

WCET estimation

Principles

- Computes a safe upper bound to the worst case execution time
- Relevance: performed at the binary level, for a know architecture
- Main problems/challenges for accuracy:
\hookrightarrow Precise modeling of the micro-architecture
\hookrightarrow Reject infeasible executions

State of the art organization

- Input: Control Flow graph (CFG) of the binary code, whose vertices are Basic Blocks of sequential instructions (BB)
- Mainly 3 steps:
\hookrightarrow Data-flow analysis: find semantic information, in order to prune infeasible executions, at least: find loop bounds to reject infinite executions
\hookrightarrow Micro-architecture analysis: mainly local to avoid intractability, assigns local "weights" to each BB and/or transition (expressed in CPU cycles)
\hookrightarrow Search of the worst (heaviest) path in the CFG annotated with the local weights Here: we focus on this step
- Implicit Path Enumeration Technique:
\hookrightarrow Encodes Path search as a numerical optimization problem
\hookrightarrow Use Integer Linear Programming (ILP) techniques

ILP encoding on an example

- μ-archi analysis has assigned weights

ILP encoding on an example

- μ-archi analysis has assigned weights e.g. $w_{a}=26, w_{b}=72$ etc.

ILP encoding on an example

- μ-archi analysis has assigned weights e.g. $w_{a}=26, w_{b}=72$ etc.
- data-flow analysis has found loop bounds ' h ' taken at most n times

ILP encoding on an example

- μ-archi analysis has assigned weights e.g. $w_{a}=26, w_{b}=72$ etc.
- data-flow analysis has found loop bounds ' h ' taken at most n times
- ILP encoding:

- μ-archi analysis has assigned weights e.g. $w_{a}=26, w_{b}=72$ etc.
- data-flow analysis has found loop bounds ' h ' taken at most n times
- ILP encoding:
\hookrightarrow Structural constraints

$$
\begin{aligned}
& a+d=1 \\
& g=a+d \\
& g+k=p+h \\
& \text { etc. }
\end{aligned}
$$

- μ-archi analysis has assigned weights e.g. $w_{a}=26, w_{b}=72$ etc.
- data-flow analysis has found loop bounds ' h ' taken at most n times
- ILP encoding:
\hookrightarrow Structural constraints
$a+d=1$
$g=a+d$
$g+k=p+h$
etc.
\hookrightarrow Semantic constraints $h \leq n$

- μ-archi analysis has assigned weights e.g. $w_{a}=26, w_{b}=72$ etc.
- data-flow analysis has found loop bounds ' h ' taken at most n times
- ILP encoding:
\hookrightarrow Structural constraints

$$
a+d=1
$$

$$
g=a+d
$$

$$
g+k=p+h
$$

etc.
\hookrightarrow Semantic constraints $h \leq n$
\hookrightarrow Objective function $\operatorname{MAX}\left(\sum_{x \in \mathcal{E}} w_{x} x\right)$

- μ-archi analysis has assigned weights e.g. $w_{a}=26, w_{b}=72$ etc.
- data-flow analysis has found loop bounds ' h ' taken at most n times
- ILP encoding:
\hookrightarrow Structural constraints

$$
\begin{aligned}
& a+d=1 \\
& g=a+d \\
& g+k=p+h \\
& \text { etc. }
\end{aligned}
$$

\hookrightarrow Semantic constraints $h \leq n$
\hookrightarrow Objective function $\operatorname{MAX}\left(\sum_{x \in \mathcal{E}} w_{x} x\right)$

Interest? against (e.g.) graph traversal techniques ?

- μ-archi analysis has assigned weights e.g. $w_{a}=26, w_{b}=72$ etc.
- data-flow analysis has found loop bounds ' h ' taken at most n times
- ILP encoding:
\hookrightarrow Structural constraints

$$
\begin{aligned}
& a+d=1 \\
& g=a+d \\
& g+k=p+h \\
& \text { etc. }
\end{aligned}
$$

\hookrightarrow Semantic constraints $h \leq n$
\hookrightarrow Objective function $\operatorname{MAX}\left(\sum_{x \in \mathcal{E}} w_{x} x\right)$

Interest ? against (e.g.) graph traversal techniques ?

\hookrightarrow Yes, as far as infeasibility constraints can be found/expressed

Infeasibility constraints

```
if (init) {
    /* a */
} else {
    /* d */
}
for(i=0;i<n;i++){
    if (Y[i]) {
        cond = not init and Z[i];
        /* b */
    } else {
        cond = true;
        /* e */
    }
    /* ... */
    if (cond){
        /* c */
    } else {
        /* f */
    }
}
```


Infeasibility constraints

```
if (init) {
    l* a */
} else {
    |* d */
}
for(i=0;i<n;i++){
    if (Y[i]) {
        cond = not init and Z[i];
        /* b */
    } else {
        cond = true;
        /* e */
    }
    /* ... */
    if (cond){
    /* c */
    } else {
    /* f */
    }
}
```


Infeasibility constraints

```
if (init) {
    /* a */
} else {
    /* d */
}
for(i=0;i<n;i++){
    if (Y[i]) {
        cond = not init and Z[i];
        /* b */
    } else {
        cond = true;
        /* e */
    }
    /* ... */
    if (cond){
    /* c */
    } else {
    /* f */
    }
}
```

- for each iteration, edges e and f are incompatible
\hookrightarrow notion of conflicting pair
\hookrightarrow largely used in literature
\hookrightarrow restricted to simple scopes
\hookrightarrow here: $e+f \leq n$
- a makes b and c incompatible at each iteration
$\hookrightarrow 3$ edges involved, conflict across loop scope...
\hookrightarrow hardly treated in literature ...
... without modifying (unfolding) the graph
\hookrightarrow however, ad hoc reasoning gives:

$$
n a+b+c \leq 2 n
$$

State of the art:

- Almost all IPET related work use extra constraints to prune infeasible path
- Mix two problems: find the properties and express them in ILP
- Mainly focus on particular properties (e.g. pairwise edge exclusion), holding for particular scopes (e.g. intra-loop), leading to particular constraint shapes (e.g. bounded sums)
- since the goal is WCET enhancement, often completed with graph transformation methods

State of the art:

- Almost all IPET related work use extra constraints to prune infeasible path
- Mix two problems: find the properties and express them in ILP
- Mainly focus on particular properties (e.g. pairwise edge exclusion), holding for particular scopes (e.g. intra-loop), leading to particular constraint shapes (e.g. bounded sums)
- since the goal is WCET enhancement, often completed with graph transformation methods

The problem faced here:

- don't consider the discovery of the properties, only their expression in ILP
- how to: characterize pruning constraints ? express them with ILP ?
- remain abstract: as far as possible only reason on numbers, not on program shape/pattern
- explore the limits of ILP formulation: graph transformation forbidden

Formalization

Programs, traces and executions

- a program $P=$ CFG $=$ vertices + edges + start + exit edges are named a, b, c etc.
- trace $=$ path from start to exit $=$ sequence of edges $\mathcal{T}(P)=$ set of P traces
- for any $t \in \mathcal{T}(P),|a|_{t}=$ number of occurrence of a in t n.b. depending on the context, we often simply note a for $|a|_{t}$
- $\mathcal{E} \subseteq \mathcal{T}(P)=$ real/exact set of (bounded) executions

$$
\text { (i.e. } \mathcal{T}(P) \backslash \mathcal{E}=\text { set of infeasible executions) }
$$

Unfoldings

- Formalize the notion of "more precise CFG"
- U a CFG, δ a mapping from U edges to P edges
let a be a P edge, a_{1}, a_{2}, \cdots be the U edges s.t. $\delta\left(a_{i}\right)=a$ (let's call them the avatars of a
- Let $\mathcal{T}^{\delta}(U)$ = set of (decoded) traces of U
- (U, δ) is an unfolding of P iff:

$$
\mathcal{E} \subseteq \mathcal{T}^{\delta}(U) \subseteq \mathcal{T}(P)
$$

- From now on: only consider ACYCLIC unfoldings N.B. This is (virtually) what we have with a CFG + loop bounds

Unfolding and ILP

- $\left\{x_{1}, \cdots, x_{n}\right\}=$ avatars of x
- $m_{x}=\#$ of x avatars
- For any trace $t \in \mathcal{T}(U)$
\hookrightarrow let $t^{\prime}=\delta(t) \in \mathcal{T}(P)$
\hookrightarrow then for any edge x : $|x|_{t^{\prime}}=\sum_{i=1}^{m_{x}}\left|x_{i}\right|_{t}$
\hookrightarrow or (simplified notation):

$$
x=\sum x_{i}
$$

- Moreover, for any x_{i} :
(acyclic property)

$$
0 \leq x_{i} \leq 1
$$

Conflict and completion (example)

- On the unfolding: n (avatar) edges are conflicting if no execution where they are all taken is feasible
- N.B. Any set of infeasible paths can be expressed as a conjunction of conflicts
\hookrightarrow It explains why we only focus on conflicts (see paper)
- For instance (example): $\left\{e_{1}, f_{1}\right\}, \ldots\left\{e_{n}, f_{n}\right\}$ are conflicting sets (all for the "same reason") $\left\{a_{1}, b_{1}, c_{1}\right\}, \ldots\left\{a_{1}, b_{n}, c_{n}\right\}$ are conflicting sets (all for the "same reason")
- Conflict to ILP, at unfolding level is trivial, e.g.:

$$
\begin{aligned}
& \hookrightarrow \forall i=1 \cdots n, \quad e_{i}+f_{i} \leq 1 \\
& \hookrightarrow \forall i=1 \cdots n, \quad a_{1}+b_{i}+c_{i} \leq 2
\end{aligned}
$$

- Erase avatar details by summing all constraints, e.g.:

$$
\begin{aligned}
& \hookrightarrow \sum_{i=1}^{n}\left(e_{i}+f_{i}\right)=e+f \leq 1 n \\
& \hookrightarrow \sum_{i=1}^{n}\left(a_{1}+b_{i}+c_{i}\right)=n a+b+c \leq 2 n
\end{aligned}
$$

Towards a general result ?

Conflict and completion (general 3-edges case)

- Sake of simplicity: case of 3 (concrete) edges, a, b, c
- Suppose existence of a (suitable) acyclic unfolding: keep it abstract, reason about numbers only !
\hookrightarrow Numbers of avatars: m_{a}, m_{b}, m_{c} avatars
\hookrightarrow Size of the conflict: a set S of s conflicting avatar triples (i, j, k), i.e. such that $a_{i}+b_{j}+c_{k} \leq 2$
- The sum of constraints gives: $\sum_{(i, j, k) \in S}\left(a_{i}+b_{j}+c_{k}\right) \leq 2 s$
- Problem: complete this constraint to obtain full versions of a, b, c ?

A (very) bad solution: rough completion

- Let $m=m_{a} * m_{b} * m_{c}$ the number of avatar triples,
- there are s conflicting triples,
- and thus $m-s$ non-conflicting triples, satisfying the (trivial) constraint:
$a_{i}+b_{j}+c_{k} \leq 3$
- leading to the non-conflict constraint:
$\sum_{(i, j, k) \notin S}\left(a_{i}+b_{j}+c_{k}\right) \leq 3(m-s)$
- Summing conflict and non-conflict constraints gives the formula:

$$
\begin{aligned}
& \sum_{(i, j, k) \notin S}\left(a_{i}+b_{j}+c_{k}\right) \leq 3(m-s) \\
&+\sum_{(i, j, k) \in S}\left(a_{i}+b_{j}+c_{k}\right) \leq 2 s
\end{aligned}
$$

$$
m_{b} m_{c} a+m_{a} m_{c} b+m_{a} m_{b} c \leq 3 m-s
$$

Likely to be very imprecise!

Precise completion

Multiplicity

- Conflict constraint is (also) of the form:

$$
\sum_{i=1}^{m_{a}} \alpha_{i} a_{i}+\sum_{j=1}^{m_{b}} \beta_{j} b_{j}+\sum_{k=1}^{m_{c}} \gamma_{k} c_{k} \leq 2 s
$$

- Idea: add as few useless constraints $\left(a_{i} \leq 1\right)$ to obtain complete "versions" of a
- focus on the a term $\left(\sum_{i=1}^{m_{a}} \alpha_{i} a_{i}\right)$:
\hookrightarrow sum of coefs is $\sum_{i=1}^{m_{a}} \alpha_{i}=s$
\hookrightarrow the biggest α_{i} is the multiplicity of a, noted p_{a} how many time MAX the whole edge is involved
\hookrightarrow In a precise solution, the "whole" a must appear p_{a} times, AND NOT MORE!
Lack
- We need p_{a} times a in the constraint, thus a total of $p_{a} m_{a}$ avatars
- It's does not matter which avatars are missing, only their number matters: the lack of a in the conflict $=\ell_{a}=p_{a} m_{a}-s$
- Conclusion: adding ℓ_{a} to the right-hand side, allows to replace all a_{i} details by $p_{a} a$ in the left hand side

Summary

In order to get a precise ILP formulation of a conflict, one has to identify:

- For each edge, its number of "avatars" m_{a}, in a suitable unfolding of the program (kept largely virtual),
- The size of the conflict, s : the number of conflicting avatars
- For each edge, its multiplicity p_{a} : the number of times the edge is "involved" in the conflict, from which we compute the lack $\ell_{a}=p_{a} m_{a}-s$ etc.
- Then, the following ILP constraint holds:

$$
p_{a} a+p_{b} b+p_{c} c \leq 2 s+\ell_{a}+\ell_{b}+\ell_{c}
$$

n.b. the generalization to any number of conflicting edges is straightforward e.g. case for 2 edges:

$$
p_{a} a+p_{b} b \leq s+\ell_{a}+\ell_{b}
$$

Examples

Example program of the beginning

- $\{e, f\}$ conflict:
\hookrightarrow loop bounds give $m_{e}=m_{f}=n$, conflict holds $s=n$ times
\hookrightarrow each avatar involved once, thus $p_{e}=p_{f}=1$ and $\ell_{e}=\ell_{f}=0$
\hookrightarrow finally: $e+f \leq n$
- $\{a, b, c\}$ conflict:
$\hookrightarrow m_{a}=1, m_{b}=m_{c}=n$, conflict holds $s=n$ times
$\hookrightarrow a$ involved n times, b and c once, thus $p_{a}=n, p_{b}=p_{c}=1$ and $\ell_{a}=\ell_{b}=\ell_{c}=0$
\hookrightarrow finally: $n a+b+c \leq 2 n$

Example with lack

- Similar to the previous $\{a, b, c\}$, except that b and c conflict on consecutive iterations i.e. $\left\{a_{1}, b_{2}, c_{1}\right\},\left\{a_{1}, b_{3}, c_{2}\right\}$ etc.
- $m_{a}=1, m_{b}=m_{c}=n$, conflict holds $s=n-1$ times
- $p_{a}=n-1$, thus $\ell_{a}=p_{a} m_{a}-s=0$
- $p_{b}=p_{c}=1$, thus $\ell_{b}=\ell_{c}=p_{b} m_{b}-s=1$
- right hand side is: $2 s+\ell_{a}+\ell_{b}+\ell_{c}=2(n-1)+2=2 n$
- finally: $(n-1) a+b+c \leq 2 n$

Auto-conflict

- An edge a within a loop conflict with the same edge at the next iteration
- Case covered by the formula: just keep in mind that a plays TWO roles i.e. apply the a, b formula, keeping in mind that $a=b$
- $m_{a}=m_{b}=n, s=n-1$
- $p_{a}=p_{b}=1, \ell_{a}=\ell_{b}=1$
- thus: $a+b \leq n-1+1+1=n+1$
- and since $a=b: 2 a \leq n+1$

Conclusion

- Explores the ability of ILP methods to express infeasibility
- Shows that infeasibility can be expressed as a conjunction of conflicting constraints
- Propose a general method, requiring to "numerically" characterize the conflicts
- Mainly a theoretical work,
- however, helps to understand/classify/compare existing concrete methods
- Open problem: can it help to develop/enhance actual methods ?

