
Lustre (or other synchronous languages)

for Arduino

H.-J. Audéoud, F. Maraninchi1,
Grenoble INP/Ensimag and VERIMAG

SYNCHRON’14, Aussois

December 4, 2014

1http://orcid.org/0000-0003-0783-9178



Arduino

1 Arduino

2 Programming Model for Arduino

3 More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

4 Networks of Arduinos (with radio communication)

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 2 / 30



Arduino

Arduino (1)

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 3 / 30



Arduino

Arduino (2) - See www.arduino.cc

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 4 / 30



Arduino

Arduino (3) - video

A safety-critical example, by Henri-Joseph.

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 5 / 30



Programming Model for Arduino

1 Arduino

2 Programming Model for Arduino

3 More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

4 Networks of Arduinos (with radio communication)

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 6 / 30



Programming Model for Arduino

Example Program -

arduino.cc/en/Tutorial/Button

const int buttonPin = 2;

// the number of the pushbutton pin

const int ledPin = 13;

// the number of the LED pin

int buttonState = 0;

// variable for reading the pushbutton status

void setup() {

pinMode(ledPin, OUTPUT);

pinMode(buttonPin, INPUT);

}

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 7 / 30



Programming Model for Arduino

Example Program -

arduino.cc/en/Tutorial/Button

void loop(){

// read the state of the pushbutton value:

buttonState = digitalRead(buttonPin);

// check if the pushbutton is pressed.

// if it is, the buttonState is HIGH:

if (buttonState == HIGH) {

// turn LED on:

digitalWrite(ledPin, HIGH);

} else {

// turn LED off:

digitalWrite(ledPin, LOW);

}

}

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 8 / 30



Programming Model for Arduino

The same in Lustre (no memory needed)

node Button (button: bool) returns (ledcmd: bool) ;

let

ledcmd = button ;

tel.

+ compiler into C
+ usual bla bla for the interfacing of the sensors/actuators

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 9 / 30



Programming Model for Arduino

The C code produced by the excellent

Raymond’s compiler

#include "Button.h"

typedef struct {

//INPUTS

_boolean _button;

//OUTPUTS

_boolean _ledcmd;

//REGISTERS

} Button_ctx;

static Button_ctx ctx;

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 10 / 30



Programming Model for Arduino

The C code produced by the excellent

Raymond’s compiler

// input function

void Button_I_button(_boolean V){

ctx._button = V;

}

// Output function

extern void Button_O_ledcmd(_boolean);

// Reset procedure

void Button_reset(){...}

// Step procedure

void Button_step(){ Button_O_ledcmd(ctx._button);}

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 11 / 30



Programming Model for Arduino

The Main Loop

... buttonState ;

const int buttonPin = 2; const int ledPin = 13;

setup()

Button_reset () ;

while (1) {

buttonState = digitalRead(buttonPin); // Arduino style

Button_I_button(buttonState==HIGH); // Lustre

Button_step ()

// in which the output procedures are called

// e.g., Button_O_ledcmd(_boolean);

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 12 / 30



Programming Model for Arduino

First Limitation of the Arduino Programming

Model... and solution

If there are a lot of inputs and outputs, or if the behavior you need
has memory, the body of the loop may become complex, and it’s
error-prone to write it by hand.

Lustre is the answer: think parallel, get the loop code for free

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 13 / 30



Programming Model for Arduino

Example with Memory

node Button (button: bool) returns (ledcmd: bool) ;

var number_pressed : int ;

let

number_pressed =

0 -> (pre number_pressed +

(if button then 1 else 0))

mod 42 ;

ledcmd = number_pressed < 12 ;

tel.

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 14 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

1 Arduino

2 Programming Model for Arduino

3 More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

4 Networks of Arduinos (with radio communication)

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 15 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

The DS18B20 Temperature Sensor and the

OneWire Protocol
http://playground.arduino.cc/Learning/OneWire

On a 1-Wire network, a single ”master”
device communicates with one or more
1-Wire ”slave” devices over a single
data line, which can also be used to
provide power to the slave devices.

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 16 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

Example: Typical Use of the DS18B20

Temperature Sensor
#include <OneWire.h> // One Wire protocol

OneWire ds(DS18B20_pin);

// Start the temperature measurement

ds.reset();ds.skip();ds.write(0x44, 1);

// Wait until the measure is available

delay(750);

// in milliseconds, not kgs or truckloads of bananas

// Retrieve the value

ds.reset();ds.skip();ds.write(0xBE);

temperature = (ds.read() + (ds.read() << 8)) * 0.0625;

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 17 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

Known Problem: the Delay
http://playground.arduino.cc/Learning/OneWire

The majority of existing code for 1Wire devices, particularly that
written for Arduino, uses a very basic ”Convert, Wait, Read”
algorithm, even for multiple devices.

Program timing for other functions:
Arguably the biggest problem with using the above methodology is
that unless threading measures are undertaken, the device must sit
(hang) and wait for the conversion to take place if a hardcoded wait
time is included. ... a 12-bit conversion process for a DS18B20 can
take as long as 750ms.

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 18 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

Where to Put this Code in the Lustre Version?

In the input function for the temperature sensor, simple, but it
means the input operation hides a 750 ms delay

Partly in the input function, and partly in an output function

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 19 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

General Solutions for Sensors like that

Part of the Lustre program is in charge of providing the
temperature for the other parts; it produces measuring orders
periodically, and reads the sensor periodically too, ensuring the
750 ms delay;

In order to reduce energy consumption, the temperature could
be updated on a clock of, say, 3s only. ...

The temperature could be updated on demand only. The Lustre
program produces measuring orders, but not periodically.

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 20 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

General Solutions for Sensors like that

Part of the Lustre program is in charge of providing the
temperature for the other parts; it produces measuring orders
periodically, and reads the sensor periodically too, ensuring the
750 ms delay;

In order to reduce energy consumption, the temperature could
be updated on a clock of, say, 3s only. ...

The temperature could be updated on demand only. The Lustre
program produces measuring orders, but not periodically.

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 20 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

General Solutions for Sensors like that

Part of the Lustre program is in charge of providing the
temperature for the other parts; it produces measuring orders
periodically, and reads the sensor periodically too, ensuring the
750 ms delay;

In order to reduce energy consumption, the temperature could
be updated on a clock of, say, 3s only. ...

The temperature could be updated on demand only. The Lustre
program produces measuring orders, but not periodically.

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 20 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

General Solutions for “delay” Sensors (1)

Temperature

Server

(Lustre)

Rest of the Lustre

program 

Actuators

sensor Activation condition (or clock)

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 21 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

General Solutions for “delay” Sensors (2)

Temperature

Server

(Lustre)

Rest of the Lustre

program 

Actuators

sensor

I need the temperature

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 22 / 30



More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

Slight Adaptation of the Main Loop

(Clocks on Inputs)

bool must_read_input = 0;

reset();

while (1) {

// use the input procedures for sensors without delay

if (must_read_input) {

use the input procedure for temp.

must_read_input = 0;

}

step (...)

// in which the output procedures are called

// one of them sets must_read_input

}

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 23 / 30



Networks of Arduinos (with radio communication)

1 Arduino

2 Programming Model for Arduino

3 More on the Arduino Programming Model: Hidden Delays, Clocks
on Inputs

4 Networks of Arduinos (with radio communication)

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 24 / 30



Networks of Arduinos (with radio communication)

Radio interface

An input buffer, storing input data when they are decoded by
the radio.

Serial.available returns the number of bytes available in
this buffer

Serial.read takes the first byte of it.

Serial.write sends values given as parameter on the serial
interface.

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 25 / 30



Networks of Arduinos (with radio communication)

In Lustre

Lustre

node

radio_out_valid

radio_out_value

radio_in_valid

radio_in_value

client

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 26 / 30



Networks of Arduinos (with radio communication)

In Lustre, with the main loop

void loop() {

// This fits perfectly in an input procedure,

// but for a tuple of inputs.

if (Serial.available > 0) {

client_I_radio_in_valid(true);

client_I_radio_in_value(Serial.read());

} else { // If the buffer is empty

client_I_radio_in_valid(false);

}

client_I_step();

}

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 27 / 30



Networks of Arduinos (with radio communication)

Complete Simulations, with models of the radio

channel

simulated
radio

channel
temperature node

moisture node

client node

radio flows with losses

radio flows

simulator node

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 28 / 30



Networks of Arduinos (with radio communication)

Conclusion

The Raymond’s compiler produces C code that can be used
directly for the required setup and loop functions of the
Arduino programming style (with the option -ctx-static)

Some work has to be done on the interfaces for “delay” sensors

This implies a programming style in Lustre where you set an
output when you need a new sample of the input

The serial interface of the radio is easy to use

Lurette/Lutin... can be used to simulate a distributed algorithm
with the real code of each node

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 29 / 30



Networks of Arduinos (with radio communication)

Questions?

(SYNCHRON’14, Aussois) December 4, 2014 December 4, 2014 30 / 30


	Arduino
	Programming Model for Arduino
	More on the Arduino Programming Model: Hidden Delays, Clocks on Inputs
	Networks of Arduinos (with radio communication)

