Integer Clocks and Local Time Scales Part I - Part II

Adrien Guatto

ENS - PARKAS

SYNCHRON 2014

Part I

Programming Languages for Reactive Systems

- Critical Control Software:
- Process unbounded sequences of data
- ... within bounded memory

■ ... and bounded reaction time.
■ Synchronous Digital Hardware:

- Process unbounded sequences of data
- ... within bounded memory
-... and bounded reaction time.
■ Synchronous Programming Languages: program both!

Synchrony and Performance-Sensitive Code

- Traditional use cases: control laws, protocols, etc.

■ Signal processing: involve...

- subtle space/time tradeoffs
- architecture-dependent optimizations

■ Can we use Synchronous Languages for such applications?
Long-Term Objective
Design and implement a...

- synchronous functional language
- compiling to hardware and software
- with the usual safety guarantees

■ but generating code of a different shape

Ingredients

Integer Clocks

- Compute streams by bursts of value
- Generate nested loops from purely functional code

Local Time Scales

- Time may pass faster inside than outside
- Time is now ambiant rather than global
- Make the type system more uniform

Linear Higher-Order Functions

- Call every function you receive exactly once
- Enable modular compilation to hardware

This Talk

■ Present Integer Clocks and Local Time Scales intuitively
■ Reason purely on stream functions à la Lustre, Lucid S., Lucy-n

- Focus on first-order parts

■ Show how the intuitions can be implemented as a type system

- (Check buffers sizes)

■ Reject non-causal programs

- Discuss soundness results
- Proof by realizability

Streams and Partiality

- Streams are infinite sequences of values
- Think of them as produced by programs running forever

■ However, streams may be partial, i.e. block after some time!

- Happens when the producer program does an infinite, silent loop.

■ Here is a picture of $\operatorname{Stream}(\mathbb{B})$, ordered by information:

Stream Functions (1/2)

Consider the following function

$$
\begin{array}{ll}
f & : \operatorname{Stream}(\mathbb{N}) \rightarrow \operatorname{Stream}(\mathbb{N}) \\
f(x . x s)= & (x+1) \cdot(f x s)
\end{array}
$$

Can it be implemented as a state machine? Yes. For example:

$$
\begin{aligned}
& m: \mathcal{M}(\mathbb{N}, \mathbb{N}) \\
& m=(\{*\}, *, \lambda(*, x) \cdot(*, x+1))
\end{aligned}
$$

The machine m processes one element per transition. It was easy since the function is length-preserving.

Stream Functions (2/2)

What about the following function?

$$
\begin{array}{ll}
g & : \operatorname{Stream}(\mathbb{N}) \rightarrow \operatorname{Stream}(\mathbb{N}) \\
g(x . x s) & =(x+1) \cdot(x-1) \cdot(g \times s)
\end{array}
$$

Yes, if we cheat a bit.

$$
\begin{aligned}
& m_{1}: \mathcal{M}(\mathbb{N}, \operatorname{List}(\mathbb{N})) \\
& m_{1}=(\{*\}, *, \lambda(*, x) \cdot(*,[x+1 ; x-1]))
\end{aligned}
$$

Another possibility:

$$
\begin{aligned}
m_{2}: & \mathcal{M}(\operatorname{List}(\mathbb{N}), \mathbb{N}) \\
m_{2}= & (\mathbb{N} \cup\{*\}, *, \\
& \lambda(s, x) . \text { if } s=* \text { then }(h d x, h d x+1) \text { else }(*, s-1))
\end{aligned}
$$

Stream Functions and Clocks

Naively speaking, the function g is not length-preserving.

$$
\begin{aligned}
& g \\
& g(x . x s)=(x+1) \cdot(x-1) \cdot(g x s)
\end{aligned}
$$

However, we can make it so by changing its (co)domain!

$$
\begin{aligned}
& g_{1} \quad: \quad \operatorname{Stream}(\operatorname{List}(\mathbb{N})) \rightarrow \operatorname{Stream}(\operatorname{List}(\mathbb{N})) \\
& g_{1}([x] \cdot x s)=[x+1 ; x-1] .\left(g_{1} x s\right) \\
& g_{2} \quad: \quad \operatorname{Stream}(\operatorname{List}(\mathbb{N})) \rightarrow \operatorname{Stream}(\operatorname{List}(\mathbb{N})) \\
& g_{2}([x] . x s)=[x+1] \text {.(let [].xs' }=x s \text { in } \\
& \left.[x-1] .\left(g_{2} x s^{\prime}\right)\right)
\end{aligned}
$$

Functions g_{1} and g_{2} are length-preserving.

Synchronizing Functions

How to describe the relationship between g, g_{1} and g_{2} ?

$$
\begin{array}{llc}
g & : & \operatorname{Stream}(\mathbb{N}) \\
g_{1} & : & \operatorname{Stream}(\operatorname{List}(\mathbb{N})) \rightarrow \operatorname{Stream}(\mathbb{N}) \\
g_{2} & : & \operatorname{Stream}(\operatorname{List}(\mathbb{N})) \rightarrow \operatorname{Stream}(\operatorname{List}(\mathbb{N})) \\
\operatorname{List}(\mathbb{N}))
\end{array}
$$

Remember that g_{1} and g_{2} work only for specific list sizes:

	Input list sizes	Output list sizes
g_{1}	$(1)^{\omega}$	$(2)^{\omega}$
g_{2}	$(10)^{\omega}$	$(1)^{\omega}$

These integer streams, clocks, fully characterize g_{1} and g_{2}. We write:

$$
\begin{array}{llll}
g_{1} & :: & (1) & \multimap(2) \\
g_{2} & :: & (10) \multimap(1)
\end{array}
$$

From Streams to Clocked Streams, and back

A clock w is just a stream of integers! What can we do with such a $w \in \operatorname{Stream}(\mathbb{N})$?

For example:

$$
\begin{array}{|l|cccccc}
\hline x=\operatorname{pack}_{1(10)^{\omega}}(a . b . c . d \ldots) & {[a]} & {[b]} & {[]} & {[c]} & {[]} & \ldots \\
\hline y=\operatorname{pack}_{(02)^{\omega}}(a . b . c . d \ldots) & {[]} & {[a ; b]} & {[]} & {[c ; d]} & {[]} & \ldots \\
\hline
\end{array}
$$

Obviously:

$$
\text { unpack } x=\text { unpack } y
$$

Synchronous Stream Functions

We now define the functions g_{1} and g_{2} purely from their clocks:

$$
\begin{aligned}
& g_{1}::(1) \multimap(2) \\
& g_{1}=\operatorname{pack}_{(2)} \circ g \circ \text { unpack } \\
& g_{2}::(10) \multimap(1) \\
& g_{2}=\operatorname{pack}_{(1)} \circ g \circ \text { unpack }
\end{aligned}
$$

What about the following function?

$$
\begin{aligned}
& g_{3}:: ?(01) \multimap(1) \\
& g_{3}=p a c k_{(1)} \circ g \circ \text { unpack }
\end{aligned}
$$

It is wrong, since it breaks its contract at the first time step:

$$
g_{3}([] \cdot \perp)=\perp
$$

From Synchronization to Desynchronization

Playing with Synchronous Functions: Buffers (1/2)

A buffer shifts the values of a clocked stream to the left:

x	$::(10)$	$[a]$	[]	$[b]$	[]	$[c]$	[]
$x^{\prime}::\left(\begin{array}{lll}(0) & 1) & {[]}\end{array}\right.$	$[a]$	[]	$[b]$	[]	$[c]$	\ldots	

The relation $w<_{i k} w^{\prime}$ models a buffer with producer w, consumer w^{\prime} and k steps of delay. For example:

- (10) <:1 (01)

- (101) $<$: 0 (011) but not $(101)<:_{1}(011)$

Playing with Synchronous Functions: Buffers (2/2)

Now, given a function $h:: w_{1} \multimap w_{2}$, we may put a buffer on its...
■ Output: if $w_{2}<:_{k} w_{2}^{\prime}$, we define

$$
\begin{aligned}
& h^{\prime}:: w_{1} \multimap w_{2}^{\prime} \\
& h^{\prime}=\text { buffer }_{w_{2}<: k w_{2}^{\prime}} \circ h
\end{aligned}
$$

For example:

$$
(1) \multimap(10)<:(1) \multimap(01)
$$

■ Input: if $w_{1}^{\prime}<:_{k} w_{1}$, we define

$$
\begin{array}{ll}
h^{\prime \prime} & :: w_{1}^{\prime} \multimap w_{2} \\
h^{\prime \prime} & =h \circ \text { buffer }_{w_{1}^{\prime}<: k w_{1}}
\end{array}
$$

For example:

$$
(01) \multimap(1)<:(10) \multimap(1)
$$

Playing with Synchronous Functions: Feedback

Given a function $h:: w_{1} \multimap w_{2}$, is it safe to compute $x=h x$? What about. . .

$$
\begin{array}{cccccc}
h_{1} & :: & (1) & \multimap & (1) & \text { KO } \\
h_{2} & :: & (01) & \multimap & (10) & \text { OK } \\
h_{3} & :: & (011) & \multimap & (101) & \text { KO }
\end{array}
$$

We allow feedback only when $w_{2}<i_{1} w_{1}$. This makes sure that $x=h x$ is total.

Part II

Recap of Part I

In part I, we saw...

- How the compilation of Lustre-like languages can be seen as making stream functions length-preserving by cheating with (co-)domains:

| from | $\operatorname{Stream}(\mathbb{N})$ | $\rightarrow \operatorname{Stream}(\mathbb{N})$ |
| :--- | :--- | :--- | :--- |
| to | $\operatorname{Stream}(\operatorname{List}(\mathbb{N}))$ | $\rightarrow \operatorname{Stream}(\operatorname{List}(\mathbb{N}))$ |

- How these way of making functions length-preserving can be characterized by the sizes of the lists
■ How you could play with some operations on stream functions, such as buffering and feedback loops.
Now we turn to the description of local time scales.

Playing with Synchronous Functions: Local Time

Take any function f implemented by state machine m, with

$$
f::(10) \multimap(01)
$$

We can transform f into f^{\prime} such that

$$
f^{\prime}::(1) \multimap(1)
$$

What would be m^{\prime}, the implementation of f^{\prime} ?

- A single transition of m^{\prime} performs two transitions of m
- We write

$$
(10) \multimap(01) \uparrow_{(2)}(1) \multimap(1)
$$

Local Time Scales and Scatter/Gather

A local time scale comes with a clock w driving its internal time
■ E.g. (21) begins with two internal steps for one external, etc.
How does the inside sees the outside? The converse?

- $w_{1} \multimap w_{2} \uparrow_{w} w_{1}^{\prime} \multimap w_{2}^{\prime}$: leaving local time

$$
\begin{array}{lll}
(101 & 1
\end{array} \multimap\left(\begin{array}{llll}
0 & 1 & \uparrow_{(21)} & (1) \multimap(1) \\
(0 & 1 & 1) & \multimap\left(\begin{array}{lll}
1 & 1
\end{array}\right)
\end{array} \uparrow_{(21)}(1) \multimap(1)\right.
$$

- $w_{1} \multimap w_{2} \downarrow_{w} w_{1}^{\prime} \multimap w_{2}^{\prime}:$ entering local time
$(1) \multimap(1) \downarrow_{(21)}(101) \multimap(011)$
OK
$(1) \multimap(1) \quad \downarrow(21) \quad(011) \multimap(101)$
KO

Scatter/Gather: Streams

Consider two simple examples:

$$
(10) \uparrow_{(2)}(1)
$$

What is the action of (2) on (10) that gives (1)?

Let us define clock composition as

$$
\begin{array}{ll}
\quad \text { on } \quad- & : \operatorname{Stream}(\mathbb{N}) \times \operatorname{Stream}(\mathbb{N}) \rightarrow \operatorname{Stream}(\mathbb{N}) \\
(n \cdot w) \text { on }\left(m_{1} \ldots m_{n} \cdot w^{\prime}\right)= & \left(\sum_{1 \leq i \leq n} m_{i}\right) \cdot\left(w \text { on } w^{\prime}\right)
\end{array}
$$

We can now define:

$$
w_{1} \uparrow_{w} w_{2} \Leftrightarrow w \text { on } w_{1}=w_{2}
$$

Similarly, (1) $\downarrow_{(2)}(01)$ because $(1)=(2)$ on (10)

Scatter/Gather: Functions

Going back to our first example: $(10) \multimap(01) \uparrow_{(2)}(1) \multimap(1)$. Why?

Because we have (1) $\downarrow_{(2)} \quad(10)$ and (01) $\uparrow_{(2)} \quad(1)$

This suggests the reasoning principle

$$
\frac{w_{1}^{\prime} \downarrow_{w} w_{1} \quad w_{2} \uparrow_{w} w_{2}^{\prime}}{w_{1} \multimap w_{2} \uparrow_{w} w_{1}^{\prime} \multimap w_{2}^{\prime}}
$$

More complex principles can be found for $w_{1} \multimap w_{2} \downarrow_{w} w_{1}^{\prime} \multimap w_{2}^{\prime}$

Putting it all together (1/2)

Take $f(x, y)=(0 . y, x)$. Is the smallest fixpoint of f total? Why?
This problem is equivalent to the scheduling of this Lustre code:

$$
\begin{aligned}
& \mathrm{x}=0 \mathrm{fby} \mathrm{y} \\
& \mathrm{y}=\mathrm{x}
\end{aligned}
$$

Consider the signature below:

$$
f::(01) \otimes 0(01) \multimap(10) \otimes(01)
$$

It mimics the growth of partial streams in $\operatorname{lfp} f=\bigsqcup_{i \geq 0}\left(f^{i} \perp\right)$:

Putting it all together (2/2)

So, with $f::(01) \otimes 0(01) \multimap(10) \otimes(01)$, since

$$
\begin{array}{ccc}
(10) & <i_{1} & (01) \\
(01) & <i_{1} & 0(01)
\end{array}
$$

we know that the fixpoint is total, and get

$$
\operatorname{lfp} f::(10) \otimes(01)
$$

Now, we can wrap it into a local time scale going twice faster

$$
(10) \otimes(01) \uparrow_{(2)}(1) \otimes(1)
$$

Interestingly, something happens to the internal buffers

$$
\begin{array}{ccc}
\text { Inside view } & \text { Outside view } & \\
(10)<i_{1}(01) & (1)<i_{0}(1) & \text { Wire } \\
(01)<i_{1} 0(01) & (1)<i_{1} 0(1) & \text { Memory }
\end{array}
$$

From Semantics to Syntax

$$
\begin{aligned}
& e::=x \\
& \lambda x . e \\
& \text { e e } \\
& (e, e) \\
& d t::=\text { bool } \mid \text { int } \mid \ldots \\
& \operatorname{let}(x, x)=e \text { in } e \\
& \text { fix e } \\
& \text { c } \\
& \text { op e } \\
& \text { merge } p \text { e e } \\
& e \text { when } p \\
& p::=c^{*}\left(c^{+}\right)
\end{aligned}
$$

Typing Buffers

Sub
$\frac{\Gamma \vdash e: t \quad \vdash t<:_{k} t^{\prime}}{\Gamma \vdash e: t^{\prime}}$

AdaptFun

$$
\frac{t_{1}^{\prime}<:_{k_{1}} t_{1} \quad t_{2}<:_{k_{2}} t_{2}^{\prime}}{t_{1} \multimap t_{2}<:_{0} t_{1}^{\prime} \multimap t_{2}^{\prime}}
$$

Typing Feedback

Fix

$$
\frac{\Gamma \vdash e: t \multimap t^{\prime} \quad \vdash t^{\prime}<:_{1} t \quad \vdash t^{\prime} \text { value }}{\Gamma \vdash \mathrm{fixe} e: t^{\prime}}
$$

Typing Local Time Scales

Scale

$$
\frac{\vdash \Gamma \downarrow_{c t} \Gamma^{\prime} \quad \Gamma^{\prime} \vdash e: t^{\prime} \quad \vdash t^{\prime} \uparrow_{c t} t}{\Gamma \vdash e: t}
$$

Soundness and Realizability

Two semantics: unclocked $\mathcal{K} \llbracket _\rrbracket$ and clocked $\mathcal{S} \llbracket _\rrbracket$, e.g.
$\mathcal{K} \llbracket \vdash$ e : int :: ct \multimap int :: ct】 : $\operatorname{Stream}(\mathbb{N}) \rightarrow \operatorname{Stream}(\mathbb{N})$ $\mathcal{S} \llbracket \vdash$ e int :: ct \multimap int :: ct $\quad: \operatorname{Stream}(\operatorname{List}(\mathbb{N})) \rightarrow \operatorname{Stream}(\operatorname{List}(\mathbb{N}))$

Soundness theorem

The statics (typing) and dynamics (semantics) agree:

$$
\forall e, d t, c t, \text { clock } \mathcal{S} \llbracket \vdash e: d t:: c t \rrbracket=\llbracket c t \rrbracket
$$

Some interesting, more or less direct corollaries:
■ The clocked semantics is causal

$$
\forall e, d t, c t, \mathcal{S} \llbracket \vdash e: d t:: c t \rrbracket \text { is total }
$$

- Synchronizing the unclocked semantics gives the clocked one

$$
\forall e, t, \mathcal{S} \llbracket \vdash e: t \rrbracket=\operatorname{sync}_{t} \mathcal{K} \llbracket \vdash e: t \rrbracket
$$

Soundness proof (1/2)

- First, define the set of realizers of some type t :

$$
\begin{array}{ll}
\mathcal{W}_{t} & \subseteq \mathcal{S} \llbracket t \rrbracket \\
\mathcal{W}_{d t:: c t} & =\{x s \mid \text { clock xs }=\llbracket c t \rrbracket\} \\
\mathcal{W}_{t_{1} \otimes t_{2}} & =\mathcal{W}_{t_{1}} \times \mathcal{W}_{t_{2}} \\
\mathcal{W}_{t \rightarrow t^{\prime}} & =\left\{f \mid \forall x \in \mathcal{W}_{t},(f x) \in \mathcal{W}_{t^{\prime}}\right\} \\
\mathcal{W}_{\Gamma} & \subseteq \mathcal{S} \llbracket \Gamma \rrbracket
\end{array}
$$

■ The soundness theorem then becomes a corollary of the adequacy lemma: for all Γ, e and t, we have

$$
\forall \gamma \in \mathcal{W}_{\Gamma},(\mathcal{S} \llbracket \Gamma \vdash e: t \rrbracket \gamma) \in \mathcal{W}_{t}
$$

■ Unfortunately, it does not work!

Soundness proof (2/2)

- The proof attempt fails on fixpoints: we need information on partial streams.
- Let us refine realizers as follows:

$$
\begin{array}{ll}
\mathcal{W}_{t}^{n \in \mathbb{N}} & \subseteq \mathcal{S} \llbracket t \rrbracket \\
\mathcal{W}_{d t:: c t}^{n}=\left\{x s \mid \text { clock } x s={ }_{n} \mathcal{S} \llbracket c t \rrbracket\right\} \\
\mathcal{W}_{t_{1} \otimes t t_{2}}^{n} & =\mathcal{W}_{t_{1}}^{n} \times \mathcal{W}_{t_{2}}^{n} \\
\mathcal{W}_{t-t^{\prime}}^{n} & =\left\{f \mid \forall m \leq n, \forall x \in \mathcal{W}_{t}^{m},(f x) \in \mathcal{W}_{t^{\prime}}^{m}\right\} \\
\mathcal{W}_{\Gamma}^{n} \in \mathbb{N} & \subseteq \mathcal{S} \llbracket \Gamma \rrbracket
\end{array}
$$

- And restate the adequacy lemma:

$$
\forall n \in \mathbb{N}, \forall \gamma \in \mathcal{W}_{\Gamma}^{n},\left(\mathcal{S} \llbracket\ulcorner\vdash e: t \rrbracket \gamma) \in \mathcal{W}_{t}^{n}\right.
$$

- An essential lemma for fixpoints:

$$
\forall t, t^{\prime}, \forall k, n \in \mathbb{N}, \forall x s \in \mathcal{W}_{t}^{n},\left(\mathcal{S} \llbracket \vdash t<:_{k} t^{\prime} \rrbracket x s\right) \in \mathcal{W}_{t^{\prime}}^{n+k}
$$

Related work and Inspiration

■ Lustre (Caspi, Halbwachs et al.)

- General conceptual setting

■ Lucid Synchrone (Caspi, Pouzet et al.)

- Clocks as types
- Separate compilation

■ Lucy-n (Mandel, Plateau, Pouzet)
■ Buffers, adaptability

- Ultimately periodic clocks

■ Clock Domains in ReactiveML (Mandel, Pasteur)

- Local time scales

■ Geometry of Synthesis, Verity (Ghica)
■ Linear HOFs to circuits via $\mathbf{G}()$ (from Abramsky, Girard)

- Cyclic Scheduling of *DFs (Lee, Munier-Kordon, etc.)
- Algorithms for type inference with periodic clocks

Conclusion and Perspectives

- A setting for unified clocking / initialization / causality analysis
- The full type system is not overly complex
- Local time scales important for modularity
- No need for a scheduling pass after typing
- Relies on standard programming language theory

■ Denotational Semantics, Types, Realizability
■ Realizability is a powerful tool. Too powerful?

- Lots of remaining questions
- Theoretical: principality, better semantic setting, full abstraction

■ Practical: type inference, optimizations, parallel code generation
Thank you!

