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Programming Languages for Reactive Systems

Critical Control Software:
Process unbounded sequences of data
. . . within bounded memory
. . . and bounded reaction time.

Synchronous Digital Hardware:
Process unbounded sequences of data
. . . within bounded memory
. . . and bounded reaction time.

Synchronous Programming Languages: program both!
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Synchrony and Performance-Sensitive Code

Traditional use cases: control laws, protocols, etc.
Signal processing: involve. . .

subtle space/time tradeoffs
architecture-dependent optimizations

Can we use Synchronous Languages for such applications?

Long-Term Objective
Design and implement a. . .

synchronous functional language
compiling to hardware and software
with the usual safety guarantees
but generating code of a different shape
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Ingredients

Integer Clocks
Compute streams by bursts of value
Generate nested loops from purely functional code

Local Time Scales
Time may pass faster inside than outside
Time is now ambiant rather than global
Make the type system more uniform

Linear Higher-Order Functions
Call every function you receive exactly once
Enable modular compilation to hardware
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This Talk

Present Integer Clocks and Local Time Scales intuitively
Reason purely on stream functions à la Lustre, Lucid S., Lucy-n
Focus on first-order parts

Show how the intuitions can be implemented as a type system
(Check buffers sizes)
Reject non-causal programs

Discuss soundness results
Proof by realizability
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Streams and Partiality

Streams are infinite sequences of values
Think of them as produced by programs running forever

However, streams may be partial, i.e. block after some time!
Happens when the producer program does an infinite, silent loop.

Here is a picture of Stream(B), ordered by information:

⊥

0.⊥

0.0.⊥ 0.1.⊥

1.⊥

1.0.⊥ 1.1.⊥
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Stream Functions (1/2)

Consider the following function

f : Stream(N)→ Stream(N)
f (x .xs) = (x + 1).(f xs)

Can it be implemented as a state machine? Yes. For example:

m : M(N,N)
m = ({∗}, ∗, λ(∗, x).(∗, x + 1))

The machine m processes one element per transition.
It was easy since the function is length-preserving.
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Stream Functions (2/2)

What about the following function?

g : Stream(N)→ Stream(N)
g(x .xs) = (x + 1).(x − 1).(g xs)

Yes, if we cheat a bit.

m1 : M(N, List(N))
m1 = ({∗}, ∗, λ(∗, x).(∗, [x + 1; x − 1]))

Another possibility:

m2 : M(List(N),N)
m2 = (N ∪ {∗}, ∗,

λ(s, x).if s = ∗ then (hd x , hd x + 1) else (∗, s − 1))
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Stream Functions and Clocks

Naively speaking, the function g is not length-preserving.

g : Stream(N)→ Stream(N)
g (x .xs) = (x + 1).(x − 1).(g xs)

However, we can make it so by changing its (co)domain!

g1 : Stream(List(N))→ Stream(List(N))
g1 ([x ].xs) = [x + 1; x − 1].(g1 xs)

g2 : Stream(List(N))→ Stream(List(N))
g2 ([x ].xs) = [x + 1].(let [].xs ′ = xs in

[x − 1].(g2 xs ′))

Functions g1 and g2 are length-preserving.
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Synchronizing Functions
How to describe the relationship between g , g1 and g2?

g : Stream(N) → Stream(N)
g1 : Stream(List(N)) → Stream(List(N))
g2 : Stream(List(N)) → Stream(List(N))

Remember that g1 and g2 work only for specific list sizes:

Input list sizes Output list sizes
g1 (1)ω (2)ω

g2 (1 0)ω (1)ω

These integer streams, clocks, fully characterize g1 and g2.
We write:

g1 :: (1) ( (2)
g2 :: (1 0) ( (1)
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From Streams to Clocked Streams, and back
A clock w is just a stream of integers!
What can we do with such a w ∈ Stream(N)?

Stream(V ) Stream(List(V ))

packw

unpack

For example:

x = pack1 (1 0)ω (a.b.c .d . . . ) [a] [b] [] [c] [] . . .

y = pack (0 2)ω (a.b.c .d . . . ) [] [a; b] [] [c ; d ] [] . . .

Obviously:
unpack x = unpack y
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Synchronous Stream Functions
We now define the functions g1 and g2 purely from their clocks:

g1 :: (1)( (2)
g1 = pack (2) ◦ g ◦ unpack
g2 :: (1 0)( (1)
g2 = pack (1) ◦ g ◦ unpack

What about the following function?

g3 ::? (0 1)( (1)
g3 = pack (1) ◦ g ◦ unpack

It is wrong, since it breaks its contract at the first time step:

g3 ([].⊥) = ⊥
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From Synchronization to Desynchronization

g : Stream(N)→ Stream(N)

g2 :: (1 0)( (1)

g1 : (1)( (2)

sync (1 0)((1)

sync (1)((2)

desync (1 0)((1)

desync (1)((2)
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Playing with Synchronous Functions: Buffers (1/2)
A buffer shifts the values of a clocked stream to the left:

x :: (1 0) [a] [] [b] [] [c] [] . . .
x ′ :: (0 1) [] [a] [] [b] [] [c] . . .

The relation w <:k w ′ models a buffer with producer w , consumer w ′

and k steps of delay. For example:
(1 0) <:1 (0 1)

(1 0) 1 0 1 0 1 0 . . .

(0 1) 0 1 0 1 0 1 . . .

(1 0 1) <:0 (0 1 1) but not (1 0 1) <:1 (0 1 1)

(1 0 ) 1 0 1 1 0 1 . . .

(0 1 1) 0 1 1 0 1 1 . . .
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Playing with Synchronous Functions: Buffers (2/2)
Now, given a function h :: w1 ( w2, we may put a buffer on its. . .

Output: if w2 <:k w ′2, we define

h′ :: w1 ( w ′2
h′ = bufferw2<:kw

′
2
◦ h

For example:
(1)( (1 0) <: (1)( (0 1)

Input: if w ′1 <:k w1, we define

h′′ :: w ′1 ( w2

h′′ = h ◦ bufferw ′
1<:kw1

For example:
(0 1)( (1) <: (1 0)( (1)
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Playing with Synchronous Functions: Feedback

Given a function h :: w1 ( w2, is it safe to compute x = h x?
What about. . .

h1 :: (1) ( (1) KO
h2 :: (0 1) ( (1 0) OK
h3 :: (0 1 1) ( (1 0 1) KO

We allow feedback only when w2 <:1 w1.
This makes sure that x = h x is total.
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Part II
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Recap of Part I

In part I, we saw. . .
How the compilation of Lustre-like languages can be seen as
making stream functions length-preserving by cheating with
(co-)domains:

from Stream(N) → Stream(N)
to Stream(List(N)) → Stream(List(N))

How these way of making functions length-preserving can be
characterized by the sizes of the lists
How you could play with some operations on stream functions,
such as buffering and feedback loops.

Now we turn to the description of local time scales.
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Playing with Synchronous Functions: Local Time

Take any function f implemented by state machine m, with

f :: (1 0)( (0 1)

We can transform f into f ′ such that

f ′ :: (1)( (1)

What would be m′, the implementation of f ′?

A single transition of m′ performs two transitions of m
We write

(1 0)( (0 1) ↑(2) (1)( (1)
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Local Time Scales and Scatter/Gather

A local time scale comes with a clock w driving its internal time
E.g. (2 1) begins with two internal steps for one external, etc.

How does the inside sees the outside? The converse?
w1 ( w2 ↑w w ′1 ( w ′2: leaving local time

(1 0 1)( (0 1 1) ↑(2 1) (1)( (1) OK
(0 1 1)( (1 0 1) ↑(2 1) (1)( (1) OK

w1 ( w2 ↓w w ′1 ( w ′2: entering local time

(1)( (1) ↓(2 1) (1 0 1)( (0 1 1) OK
(1)( (1) ↓(2 1) (0 1 1)( (1 0 1) KO
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Scatter/Gather: Streams
Consider two simple examples:

(1 0) ↑(2) (1)

What is the action of (2) on (1 0) that gives (1)?

Let us define clock composition as

_ on _ : Stream(N)× Stream(N)→ Stream(N)
(n.w) on (m1 . . .mn.w

′) = (
∑

1≤i≤n
mi).(w on w ′)

We can now define:

w1 ↑w w2 ⇔ w on w1 = w2

Similarly, (1) ↓(2) (0 1) because (1) = (2) on (1 0)
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Scatter/Gather: Functions

Going back to our first example: (1 0)( (0 1) ↑(2) (1)( (1). Why?

Because we have (1) ↓(2) (1 0)
and (0 1) ↑(2) (1)

This suggests the reasoning principle

w ′1 ↓w w1 w2 ↑w w ′2
w1 ( w2 ↑w w ′1 ( w ′2

More complex principles can be found for w1 ( w2 ↓w w ′1 ( w ′2
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Putting it all together (1/2)
Take f (x , y) = (0.y , x). Is the smallest fixpoint of f total? Why?

This problem is equivalent to the scheduling of this Lustre code:

x = 0 fby y
y = x

Consider the signature below:

f :: (0 1)⊗ 0(0 1)( (1 0)⊗ (0 1)

It mimics the growth of partial streams in lfp f =
⊔

i≥0(f i⊥):

x f x
(⊥,⊥) (0.⊥,⊥)

(0.⊥,⊥) (0.⊥, 0.⊥)
(0.⊥, 0.⊥) (0.0.⊥, 0.⊥)

(0.0.⊥, 0.⊥) (0.0.⊥, 0.0.⊥)
. . . . . .
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Putting it all together (2/2)
So, with f :: (0 1)⊗ 0(0 1)( (1 0)⊗ (0 1), since

(1 0) <:1 (0 1)
(0 1) <:1 0(0 1)

we know that the fixpoint is total, and get

lfp f :: (1 0)⊗ (0 1)

Now, we can wrap it into a local time scale going twice faster

(1 0)⊗ (0 1) ↑(2) (1)⊗ (1)

Interestingly, something happens to the internal buffers

Inside view Outside view
(1 0) <:1 (0 1) (1) <:0 (1) Wire

(0 1) <:1 0(0 1) (1) <:1 0(1) Memory
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From Semantics to Syntax

e ::= x
| λx .e
| e e
| (e, e)
| let (x , x) = e in e
| fix e
| c
| op e
| merge p e e
| e when p

p ::= c∗(c+)

t ::= dt :: ct
| t ⊗ t
| t ( t

dt ::= bool | int | . . .
ct ::= p

| ct on ct

Γ ::= �
| Γ, x : t
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Typing Buffers

Sub
Γ ` e : t ` t <:k t

′

Γ ` e : t ′

AdaptFun

t ′1 <:k1 t1 t2 <:k2 t
′
2

t1 ( t2 <:0 t
′
1 ( t ′2
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Typing Feedback

Fix
Γ ` e : t ( t ′ ` t ′ <:1 t ` t ′ value

Γ ` fix e : t ′
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Typing Local Time Scales

Scale
` Γ ↓ct Γ′ Γ′ ` e : t ′ ` t ′ ↑ct t

Γ ` e : t
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Soundness and Realizability
Two semantics: unclocked KJ_K and clocked SJ_K, e.g.

KJ` e : int :: ct ( int :: ctK : Stream(N)→ Stream(N)
SJ` e : int :: ct ( int :: ctK : Stream(List(N))→ Stream(List(N))

Soundness theorem
The statics (typing) and dynamics (semantics) agree:

∀e, dt, ct, clock SJ` e : dt :: ctK = JctK

Some interesting, more or less direct corollaries:
The clocked semantics is causal

∀e, dt, ct,SJ` e : dt :: ctK is total
Synchronizing the unclocked semantics gives the clocked one

∀e, t,SJ` e : tK = sync t KJ` e : tK
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Soundness proof (1/2)

First, define the set of realizers of some type t:

Wt ⊆ SJtK
Wdt :: ct = {xs | clock xs = JctK}
Wt1⊗t2 = Wt1

×Wt2

Wt(t′ = {f | ∀x ∈ Wt , (f x) ∈ Wt′}
WΓ ⊆ SJΓK

. . .

The soundness theorem then becomes a corollary of
the adequacy lemma: for all Γ, e and t, we have

∀γ ∈ WΓ, (SJΓ ` e : tK γ) ∈ Wt

Unfortunately, it does not work!
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Soundness proof (2/2)

The proof attempt fails on fixpoints: we need information on
partial streams.
Let us refine realizers as follows:

Wn∈N
t ⊆ SJtK
Wn

dt :: ct = {xs | clock xs =n SJctK}
Wn

t1⊗t2 = Wn
t1
×Wn

t2

Wn
t(t′ = {f | ∀m ≤ n, ∀x ∈ Wm

t , (f x) ∈ Wm
t′ }

Wn∈N
Γ ⊆ SJΓK

. . .

And restate the adequacy lemma:

∀n ∈ N, ∀γ ∈ Wn
Γ , (SJΓ ` e : tK γ) ∈ Wn

t

An essential lemma for fixpoints:

∀t, t ′, ∀k , n ∈ N,∀xs ∈ Wn
t , (SJ` t <:k t ′K xs) ∈ Wn+k

t′
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Related work and Inspiration

Lustre (Caspi, Halbwachs et al.)
General conceptual setting

Lucid Synchrone (Caspi, Pouzet et al.)
Clocks as types
Separate compilation

Lucy-n (Mandel, Plateau, Pouzet)
Buffers, adaptability
Ultimately periodic clocks

Clock Domains in ReactiveML (Mandel, Pasteur)
Local time scales

Geometry of Synthesis, Verity (Ghica)
Linear HOFs to circuits via G() (from Abramsky, Girard)

Cyclic Scheduling of *DFs (Lee, Munier-Kordon, etc.)
Algorithms for type inference with periodic clocks
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Conclusion and Perspectives

A setting for unified clocking / initialization / causality analysis
The full type system is not overly complex
Local time scales important for modularity
No need for a scheduling pass after typing

Relies on standard programming language theory
Denotational Semantics, Types, Realizability
Realizability is a powerful tool. Too powerful?

Lots of remaining questions
Theoretical: principality, better semantic setting, full abstraction
Practical: type inference, optimizations, parallel code generation

Thank you!
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