
Integer Clocks and Local Time Scales
Part I – Part II

Adrien Guatto

ENS - PARKAS

SYNCHRON 2014

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 1 / 31

Part I

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 1 / 31

Programming Languages for Reactive Systems

Critical Control Software:
Process unbounded sequences of data
. . . within bounded memory
. . . and bounded reaction time.

Synchronous Digital Hardware:
Process unbounded sequences of data
. . . within bounded memory
. . . and bounded reaction time.

Synchronous Programming Languages: program both!

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 2 / 31

Synchrony and Performance-Sensitive Code

Traditional use cases: control laws, protocols, etc.
Signal processing: involve. . .

subtle space/time tradeoffs
architecture-dependent optimizations

Can we use Synchronous Languages for such applications?

Long-Term Objective
Design and implement a. . .

synchronous functional language
compiling to hardware and software
with the usual safety guarantees
but generating code of a different shape

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 3 / 31

Ingredients

Integer Clocks
Compute streams by bursts of value
Generate nested loops from purely functional code

Local Time Scales
Time may pass faster inside than outside
Time is now ambiant rather than global
Make the type system more uniform

Linear Higher-Order Functions
Call every function you receive exactly once
Enable modular compilation to hardware

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 4 / 31

This Talk

Present Integer Clocks and Local Time Scales intuitively
Reason purely on stream functions à la Lustre, Lucid S., Lucy-n
Focus on first-order parts

Show how the intuitions can be implemented as a type system
(Check buffers sizes)
Reject non-causal programs

Discuss soundness results
Proof by realizability

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 5 / 31

Streams and Partiality

Streams are infinite sequences of values
Think of them as produced by programs running forever

However, streams may be partial, i.e. block after some time!
Happens when the producer program does an infinite, silent loop.

Here is a picture of Stream(B), ordered by information:

⊥

0.⊥

0.0.⊥ 0.1.⊥

1.⊥

1.0.⊥ 1.1.⊥

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 6 / 31

Stream Functions (1/2)

Consider the following function

f : Stream(N)→ Stream(N)
f (x .xs) = (x + 1).(f xs)

Can it be implemented as a state machine? Yes. For example:

m : M(N,N)
m = ({∗}, ∗, λ(∗, x).(∗, x + 1))

The machine m processes one element per transition.
It was easy since the function is length-preserving.

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 7 / 31

Stream Functions (2/2)

What about the following function?

g : Stream(N)→ Stream(N)
g(x .xs) = (x + 1).(x − 1).(g xs)

Yes, if we cheat a bit.

m1 : M(N, List(N))
m1 = ({∗}, ∗, λ(∗, x).(∗, [x + 1; x − 1]))

Another possibility:

m2 : M(List(N),N)
m2 = (N ∪ {∗}, ∗,

λ(s, x).if s = ∗ then (hd x , hd x + 1) else (∗, s − 1))

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 8 / 31

Stream Functions and Clocks

Naively speaking, the function g is not length-preserving.

g : Stream(N)→ Stream(N)
g (x .xs) = (x + 1).(x − 1).(g xs)

However, we can make it so by changing its (co)domain!

g1 : Stream(List(N))→ Stream(List(N))
g1 ([x].xs) = [x + 1; x − 1].(g1 xs)

g2 : Stream(List(N))→ Stream(List(N))
g2 ([x].xs) = [x + 1].(let [].xs ′ = xs in

[x − 1].(g2 xs ′))

Functions g1 and g2 are length-preserving.

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 9 / 31

Synchronizing Functions
How to describe the relationship between g , g1 and g2?

g : Stream(N) → Stream(N)
g1 : Stream(List(N)) → Stream(List(N))
g2 : Stream(List(N)) → Stream(List(N))

Remember that g1 and g2 work only for specific list sizes:

Input list sizes Output list sizes
g1 (1)ω (2)ω

g2 (1 0)ω (1)ω

These integer streams, clocks, fully characterize g1 and g2.
We write:

g1 :: (1) ((2)
g2 :: (1 0) ((1)

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 10 / 31

From Streams to Clocked Streams, and back
A clock w is just a stream of integers!
What can we do with such a w ∈ Stream(N)?

Stream(V) Stream(List(V))

packw

unpack

For example:

x = pack1 (1 0)ω (a.b.c .d . . .) [a] [b] [] [c] [] . . .

y = pack (0 2)ω (a.b.c .d . . .) [] [a; b] [] [c ; d] [] . . .

Obviously:
unpack x = unpack y

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 11 / 31

Synchronous Stream Functions
We now define the functions g1 and g2 purely from their clocks:

g1 :: (1)((2)
g1 = pack (2) ◦ g ◦ unpack
g2 :: (1 0)((1)
g2 = pack (1) ◦ g ◦ unpack

What about the following function?

g3 ::? (0 1)((1)
g3 = pack (1) ◦ g ◦ unpack

It is wrong, since it breaks its contract at the first time step:

g3 ([].⊥) = ⊥

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 12 / 31

From Synchronization to Desynchronization

g : Stream(N)→ Stream(N)

g2 :: (1 0)((1)

g1 : (1)((2)

sync (1 0)((1)

sync (1)((2)

desync (1 0)((1)

desync (1)((2)

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 13 / 31

Playing with Synchronous Functions: Buffers (1/2)
A buffer shifts the values of a clocked stream to the left:

x :: (1 0) [a] [] [b] [] [c] [] . . .
x ′ :: (0 1) [] [a] [] [b] [] [c] . . .

The relation w <:k w ′ models a buffer with producer w , consumer w ′

and k steps of delay. For example:
(1 0) <:1 (0 1)

(1 0) 1 0 1 0 1 0 . . .

(0 1) 0 1 0 1 0 1 . . .

(1 0 1) <:0 (0 1 1) but not (1 0 1) <:1 (0 1 1)

(1 0) 1 0 1 1 0 1 . . .

(0 1 1) 0 1 1 0 1 1 . . .
Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 14 / 31

Playing with Synchronous Functions: Buffers (2/2)
Now, given a function h :: w1 (w2, we may put a buffer on its. . .

Output: if w2 <:k w ′2, we define

h′ :: w1 (w ′2
h′ = bufferw2<:kw

′
2
◦ h

For example:
(1)((1 0) <: (1)((0 1)

Input: if w ′1 <:k w1, we define

h′′ :: w ′1 (w2

h′′ = h ◦ bufferw ′
1<:kw1

For example:
(0 1)((1) <: (1 0)((1)

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 15 / 31

Playing with Synchronous Functions: Feedback

Given a function h :: w1 (w2, is it safe to compute x = h x?
What about. . .

h1 :: (1) ((1) KO
h2 :: (0 1) ((1 0) OK
h3 :: (0 1 1) ((1 0 1) KO

We allow feedback only when w2 <:1 w1.
This makes sure that x = h x is total.

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 16 / 31

Part II

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 16 / 31

Recap of Part I

In part I, we saw. . .
How the compilation of Lustre-like languages can be seen as
making stream functions length-preserving by cheating with
(co-)domains:

from Stream(N) → Stream(N)
to Stream(List(N)) → Stream(List(N))

How these way of making functions length-preserving can be
characterized by the sizes of the lists
How you could play with some operations on stream functions,
such as buffering and feedback loops.

Now we turn to the description of local time scales.

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 16 / 31

Playing with Synchronous Functions: Local Time

Take any function f implemented by state machine m, with

f :: (1 0)((0 1)

We can transform f into f ′ such that

f ′ :: (1)((1)

What would be m′, the implementation of f ′?

A single transition of m′ performs two transitions of m
We write

(1 0)((0 1) ↑(2) (1)((1)

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 17 / 31

Local Time Scales and Scatter/Gather

A local time scale comes with a clock w driving its internal time
E.g. (2 1) begins with two internal steps for one external, etc.

How does the inside sees the outside? The converse?
w1 (w2 ↑w w ′1 (w ′2: leaving local time

(1 0 1)((0 1 1) ↑(2 1) (1)((1) OK
(0 1 1)((1 0 1) ↑(2 1) (1)((1) OK

w1 (w2 ↓w w ′1 (w ′2: entering local time

(1)((1) ↓(2 1) (1 0 1)((0 1 1) OK
(1)((1) ↓(2 1) (0 1 1)((1 0 1) KO

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 18 / 31

Scatter/Gather: Streams
Consider two simple examples:

(1 0) ↑(2) (1)

What is the action of (2) on (1 0) that gives (1)?

Let us define clock composition as

_ on _ : Stream(N)× Stream(N)→ Stream(N)
(n.w) on (m1 . . .mn.w

′) = (
∑

1≤i≤n
mi).(w on w ′)

We can now define:

w1 ↑w w2 ⇔ w on w1 = w2

Similarly, (1) ↓(2) (0 1) because (1) = (2) on (1 0)
Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 19 / 31

Scatter/Gather: Functions

Going back to our first example: (1 0)((0 1) ↑(2) (1)((1). Why?

Because we have (1) ↓(2) (1 0)
and (0 1) ↑(2) (1)

This suggests the reasoning principle

w ′1 ↓w w1 w2 ↑w w ′2
w1 (w2 ↑w w ′1 (w ′2

More complex principles can be found for w1 (w2 ↓w w ′1 (w ′2

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 20 / 31

Putting it all together (1/2)
Take f (x , y) = (0.y , x). Is the smallest fixpoint of f total? Why?

This problem is equivalent to the scheduling of this Lustre code:

x = 0 fby y
y = x

Consider the signature below:

f :: (0 1)⊗ 0(0 1)((1 0)⊗ (0 1)

It mimics the growth of partial streams in lfp f =
⊔

i≥0(f i⊥):

x f x
(⊥,⊥) (0.⊥,⊥)

(0.⊥,⊥) (0.⊥, 0.⊥)
(0.⊥, 0.⊥) (0.0.⊥, 0.⊥)

(0.0.⊥, 0.⊥) (0.0.⊥, 0.0.⊥)
.

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 21 / 31

Putting it all together (2/2)
So, with f :: (0 1)⊗ 0(0 1)((1 0)⊗ (0 1), since

(1 0) <:1 (0 1)
(0 1) <:1 0(0 1)

we know that the fixpoint is total, and get

lfp f :: (1 0)⊗ (0 1)

Now, we can wrap it into a local time scale going twice faster

(1 0)⊗ (0 1) ↑(2) (1)⊗ (1)

Interestingly, something happens to the internal buffers

Inside view Outside view
(1 0) <:1 (0 1) (1) <:0 (1) Wire

(0 1) <:1 0(0 1) (1) <:1 0(1) Memory

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 22 / 31

From Semantics to Syntax

e ::= x
| λx .e
| e e
| (e, e)
| let (x , x) = e in e
| fix e
| c
| op e
| merge p e e
| e when p

p ::= c∗(c+)

t ::= dt :: ct
| t ⊗ t
| t (t

dt ::= bool | int | . . .
ct ::= p

| ct on ct

Γ ::= �
| Γ, x : t

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 23 / 31

Typing Buffers

Sub
Γ ` e : t ` t <:k t

′

Γ ` e : t ′

AdaptFun

t ′1 <:k1 t1 t2 <:k2 t
′
2

t1 (t2 <:0 t
′
1 (t ′2

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 24 / 31

Typing Feedback

Fix
Γ ` e : t (t ′ ` t ′ <:1 t ` t ′ value

Γ ` fix e : t ′

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 25 / 31

Typing Local Time Scales

Scale
` Γ ↓ct Γ′ Γ′ ` e : t ′ ` t ′ ↑ct t

Γ ` e : t

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 26 / 31

Soundness and Realizability
Two semantics: unclocked KJ_K and clocked SJ_K, e.g.

KJ` e : int :: ct (int :: ctK : Stream(N)→ Stream(N)
SJ` e : int :: ct (int :: ctK : Stream(List(N))→ Stream(List(N))

Soundness theorem
The statics (typing) and dynamics (semantics) agree:

∀e, dt, ct, clock SJ` e : dt :: ctK = JctK

Some interesting, more or less direct corollaries:
The clocked semantics is causal

∀e, dt, ct,SJ` e : dt :: ctK is total
Synchronizing the unclocked semantics gives the clocked one

∀e, t,SJ` e : tK = sync t KJ` e : tK
Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 27 / 31

Soundness proof (1/2)

First, define the set of realizers of some type t:

Wt ⊆ SJtK
Wdt :: ct = {xs | clock xs = JctK}
Wt1⊗t2 = Wt1

×Wt2

Wt(t′ = {f | ∀x ∈ Wt , (f x) ∈ Wt′}
WΓ ⊆ SJΓK

. . .

The soundness theorem then becomes a corollary of
the adequacy lemma: for all Γ, e and t, we have

∀γ ∈ WΓ, (SJΓ ` e : tK γ) ∈ Wt

Unfortunately, it does not work!

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 28 / 31

Soundness proof (2/2)

The proof attempt fails on fixpoints: we need information on
partial streams.
Let us refine realizers as follows:

Wn∈N
t ⊆ SJtK
Wn

dt :: ct = {xs | clock xs =n SJctK}
Wn

t1⊗t2 = Wn
t1
×Wn

t2

Wn
t(t′ = {f | ∀m ≤ n, ∀x ∈ Wm

t , (f x) ∈ Wm
t′ }

Wn∈N
Γ ⊆ SJΓK

. . .

And restate the adequacy lemma:

∀n ∈ N, ∀γ ∈ Wn
Γ , (SJΓ ` e : tK γ) ∈ Wn

t

An essential lemma for fixpoints:

∀t, t ′, ∀k , n ∈ N,∀xs ∈ Wn
t , (SJ` t <:k t ′K xs) ∈ Wn+k

t′

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 29 / 31

Related work and Inspiration

Lustre (Caspi, Halbwachs et al.)
General conceptual setting

Lucid Synchrone (Caspi, Pouzet et al.)
Clocks as types
Separate compilation

Lucy-n (Mandel, Plateau, Pouzet)
Buffers, adaptability
Ultimately periodic clocks

Clock Domains in ReactiveML (Mandel, Pasteur)
Local time scales

Geometry of Synthesis, Verity (Ghica)
Linear HOFs to circuits via G() (from Abramsky, Girard)

Cyclic Scheduling of *DFs (Lee, Munier-Kordon, etc.)
Algorithms for type inference with periodic clocks

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 30 / 31

Conclusion and Perspectives

A setting for unified clocking / initialization / causality analysis
The full type system is not overly complex
Local time scales important for modularity
No need for a scheduling pass after typing

Relies on standard programming language theory
Denotational Semantics, Types, Realizability
Realizability is a powerful tool. Too powerful?

Lots of remaining questions
Theoretical: principality, better semantic setting, full abstraction
Practical: type inference, optimizations, parallel code generation

Thank you!

Adrien Guatto (ENS - PARKAS) Integer Clocks and Local Time Scales SYNCHRON 2014 31 / 31

	Introduction
	Stream Functions and Clocks
	From Clocks to Clock Types
	Conclusion

