	Classical Behavioral Semantics	Constructive Semantics		Conclusion
000	0000	0000	00000	

Towards a Coq-Verified Compiler from Esterel to Circuits

Lionel RIEG

Collège de France

December 4th, 2014

Introduction	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
Long-te	erm goal			

Follow the ideas of CompCert:

- Esterel kernel is simpler than C
 → I only consider Pure Esterel v5
- Coq allows extracting the compiler
- I could also go to C code and link with CompCert
- several transformation passes
 → semantics is preserved across passes

Here, only the formalization of several semantics of Esterel (it's just the beginning!)

A reaction $P \longrightarrow^* P'$ of P into P' in several ticks

One reduction $p \rightarrow \ldots \rightarrow q$ for each clock tick, having:

- inputs I
- outputs O
- return code k

I only consider reductions, written $p \xrightarrow{O, k} p'$

```
emit s; pause; present i then pause else emit s \xrightarrow{\{s\},1}
present i then pause else emit s \xrightarrow{I}
nothing
```

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

p, q :=	0 1 T + 2	nothing pause exit <i>T</i>	T a de Bruijn integer
	!s	emit s	
	s?p · q	present s then p els	se q end
	$s \supset p$	suspend p when s	
	p;q p q		
	p*	loop p end	
	↑p	does not	exist in the language
	{ p }	trap p end	
	$p \setminus s$	signal s in p end	

+ macros, ex: $s \supset p := \{(s?1 \cdot 2)*\}; s \supset p$

$$\frac{p \xrightarrow[l]{0,k_{+}} p' \quad s \in O_{+}}{p \setminus s \xrightarrow[l]{0,k_{+}} p' \setminus s} \text{LBS}$$

$$\frac{p \xrightarrow{O_+, k_+}}{l \cup \{s\}} p' \xrightarrow{p} \frac{p}{l \setminus \{s\}} p' \quad s \in O_+, O_-}{p \setminus s}$$

$$p \setminus s \xrightarrow{O_+ \setminus \{s\}, k_+}{l} p' \setminus s$$

$$\frac{p \xrightarrow{O_+, k_+}}{I \cup \{s\}} p' \qquad p \xrightarrow{O_-, k_-}{I \setminus \{s\}} p' \qquad s \in O_+, O_- \qquad k_+, k_- < \infty$$

$$p \setminus s \xrightarrow{O \setminus \{s\}, k_+}{I} p' \setminus s$$
RDS

	Classical Behavioral Semantics	Constructive Semantics		Conclusion
000	0000	0000	00000	
Propert	ies			

		deterministic	reactive (<i>i.e.</i> total)
	LBS	×	×
٩	DS	\checkmark	×
	RDS	\checkmark	\checkmark

ightarrow RDS can be a function

• If
$$k < \infty$$
, RDS \iff DS \implies LBS

• In
$$p \xrightarrow{0, k}_{l} p'$$
, if $k \neq 1$, then $p' = nothing$.
 \rightarrow requires to add δ
 $\delta k p := \text{ if } k = 1 \text{ then } p \text{ else nothing}$

• $p \xrightarrow{O, \infty}_{l} p' \longleftrightarrow$ we use looperror or signalMP/signalPM \rightarrow requires to formally define "use" $\rightarrow (p, l)$ error-free := they are not used in the reduction

	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
What a	bout Coq?			

All results in this talk are proved in Coq

Feedback from using Coq:

- I, O = events or sets of signals?
 → Gérard Berry vs. Olivier Tardieu
- higher-order logic: one definition for determinism
 Definition deterministic {T : Type} (R : semantics T) p := forall I O₁ k₁ p₁ O₂ k₂ p₂, R p I O₁ k₁ p₁ → R p I O₂ k₂ p₂ → S.Equal O₁O₂ ∧ k₁ = k₂ ∧ p₁ = p₂.
- compatibility w.r.t. set equality on I and O
- find bugs: $p \xrightarrow[RDS]{0,\infty} 0 \implies 0 = \emptyset$!s || 0* [Tardieu]

 \sim should we change the semantics?

- remove all problems of:
 - non-determinism
 - backward dependency across sequence
- closer to circuit semantics [Berry, Mendler, Shiple] constructive circuit = stabilizes for all delays
- based on what Must/Can be done
 → only affects p\s
 - s true in $p \iff s \in Must(p, E)$
 - s false in $p \iff s \notin \operatorname{Can}(p, E)$
 - otherwise, we block!

Introduction	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
The Constructive Case				

CBS = Constructive Behavioral Semantics *cf.* Esterel Constructive Book

Must: what must be done

- Must_s: set of signals that must be emitted
- Must_k: the return code that *p* must return (at most 1)

Can: what can be done

- Cans: set of signals that can be emitted
- Can_k: set of return codes that p can return

Again *I*, *O*: events or sets?

 \rightarrow sets but also requires A, set of absent signals

Lionel Rieg

Notation:

$$p \xrightarrow[A,l]{O,k} p'$$

• Max K L defined by Gonthier's formula

 $Max \ K \ L = \{n \in \mathbb{N} \mid \exists kl, k \in K \land l \in L \land n = \max k \ l\} \\ = \{n \in K \cup L \mid n \ge \min K \land n \ge \min L\}$

+ its specification: $Max \ K \ L := filter (\geq (\min L)) (filter (\geq (\min K)) (K \cup L))$ with $x \in (Max \ K \ L) \iff \exists kl, k \in K \land l \in L \land x = \max k \ l$

• Must $p E \subseteq Can^+ p E$ (separate proof)

monotony of Can and Must
 → big mutual induction: 400 I. of proof!

	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
Proper	ties of CBS			

- Deterministic but not reactive
 → Must/Can may get stuck
 → we can use ∞ to track errors
- In $p \xrightarrow{O,k} p'$, if $k \neq 1$, then p' =nothing (requires some δ)
- CBS et Can/Must: if $p \xrightarrow{O, k} p'$, then
 - $s \in \text{Must}_s p E_{A,l} \implies s \in O$ + idem for k

•
$$s \in O \implies s \in \operatorname{Can}_s^m p E_{A,l}$$
 + idem for k

- Same for LBS (mutually recursive proof of 200 l.)
- CBS \implies LBS mais CBS \implies RDS
- If p error-free, CBS ⇒ RDS
 → CBS ignores errors inside unreachable code (p\s)

Introduction	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
Why a s	state semantics?			

Intermediate step between Esterel and circuits:

- on source code but the program does not change (unlike LBS)
- program counters indicate where we are
- state semantics very close to circuit semantics
- pause statements are mapped to registers

↓ emit s; pause; present i then pause else emit s emit s; pause; ↓ present i then pause else emit s emit s; pause; present i then pause else emit s↓

Introduction	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
Commands and states				

$$\hat{p}, \hat{q} := \begin{vmatrix} 0 \\ 1 \\ T+2 \\ !s \\ s?p \cdot q \\ s \supset p \\ p; q \\ p \parallel q \\ p* \\ \uparrow p \\ \{p\} \\ p \setminus s \end{vmatrix}$$

Introduction	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
Commands and states				

$$\hat{p}, \hat{q} := \begin{vmatrix} 1 \\ s?p \cdot c \\ s \supset p \\ p; q \\ p \parallel q \\ p* \\ \uparrow p \\ \{p\} \\ p \setminus s \end{vmatrix}$$

Introduction	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
Comma	ands and states			

p̂, *q̂* := î activated pause s?p · q $s \supset p$ p; q $p \parallel q$ p* ↑ *p* {p} p∖s

Introduction	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
Commands and states				

 $\hat{p}, \hat{q} \coloneqq \begin{vmatrix} \hat{p} \\ \hat{1} \end{vmatrix}$ activated pause $s?\hat{p} \cdot q \mid s?p \cdot \hat{q}$ $s \supset \hat{p}$ $\hat{p}; q \mid p; \hat{q}$ $\hat{p} \parallel q \mid p \parallel \hat{q} \mid \hat{p} \parallel \hat{q}$ | *p̂*∗ ↑ *p̂* {*p̂*} *p̂\s*

Introduction	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
Commands and states				

p̂, *q̂* := activated pause î $\hat{p} = state$ (computation pending) $s?\hat{p} \cdot q \mid s?p \cdot \hat{q}$ $s \supset \hat{p}$ $\hat{p}; q \mid p; \hat{q}$ $\hat{p} \parallel q \mid p \parallel \hat{q} \mid \hat{p} \parallel \hat{q}$ p = command(computation done) Ô* $\overline{p} := \hat{p} \mid p$ (term)

LSBS = Logical State Behavioral Semantics

- 2 types of rules: s-rules (start) and r-rules (resume)
 → 2 distinct inductive definitions: first sLSBS
 then rLSBS
 TLSBS
 from states to terms
 TLSBS
 from terms to terms
- main theorem:

$$\hat{p} \xrightarrow[l]{O,k}_{l \text{LSBS}} \overline{p'} \implies \exists q, \mathcal{E}(\hat{p}) \xrightarrow[l]{O,k}_{l \text{LBS}} q \wedge \delta k \left(\mathcal{E}(\overline{p'}) \right) \equiv q$$

where
$$p \equiv q := "p$$
 and q equivalent"
 $\mathcal{E}(\hat{p}) :=$ expansion of \hat{p}
= what will be executed in the next tick

• $p \equiv q$: immediate equivalence vs. bisimulation

• \equiv_{imm} not compatible with the kernel: $p \equiv_{imm} q \implies s \supset p \equiv_{imm} s \supset q$

(when s is present)

- bisimulation requires coinduction
- small mistake in the definition of states: $\overline{p} \parallel \overline{q}$ allows two commands $(p \parallel q)$

•
$$\hat{p} \xrightarrow[l]{l}{}_{rLSBS} p' \implies (k = 1 \iff p' \text{ state})$$

 \rightarrow was wrong for $p \parallel q$ (when $k_p = 1$ and $k_q > 1$)

Yet another semantics: CSBS

- Same restriction on LSBS as going from LBS to CBS (signal declaration must be constructive)
 → Must/Can extended to states
- proofs work exactly the same

	Classical Behavioral Semantics	Constructive Semantics	State semantics	Conclusion
Conclusion & Next Steps				

Summary:

- formal proofs of "obvious results" (except the wrong ones)
- iron out a few bugs
- only semantics here
 → necessary to compare Esterel and circuits

Next steps:

- get to circuits!
 - \rightsquigarrow write their semantics
 - \sim (finally) write the compiler
- prove that compilation preserve semantics
- handle schizophrenia & verify optimization
- toward full Esterel?

Summary:

- formal proofs of "obvious results" (except the wrong ones)
- iron out a few bugs
- only semantics here
 → necessary to compare Esterel and circuits

Next steps:

- get to circuits!
 - \rightsquigarrow write their semantics
 - \rightsquigarrow (finally) write the compiler
- prove that compilation preserve semantics
- handle schizophrenia & verify optimization
- toward full Esterel?

Thank you for your attention