
Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Towards a Coq-Verified Compiler
from Esterel to Circuits

Lionel Rieg

Collège de France

December 4th, 2014

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Long-term goal

Follow the ideas of CompCert:

Esterel kernel is simpler than C
{ I only consider Pure Esterel v5

Coq allows extracting the compiler

I could also go to C code and link with CompCert

several transformation passes
{ semantics is preserved across passes

Here, only the formalization of several semantics of Esterel
(it’s just the beginning!)

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

High-level view of semantics

A reaction P −→∗ P′ of P into P′ in several ticks

One reduction p → . . .→ q for each clock tick, having:

inputs I

outputs O

return code k

I only consider reductions, written p
O , k
−−−→

I
p′

emit s; pause; present i then pause else emit s
{s}, 1
−−−−→

I

present i then pause else emit s
{s}, 0
−−−−→

I

nothing

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Pure Esterel kernel syntax (commands)

p, q := 0 nothing
1 pause
T + 2 exit T T a de Bruijn integer
!s emit s
s?p · q present s then p else q end
s ⊃ p suspend p when s
p; q
p || q
p∗ loop p end
↑ p does not exist in the language
{p} trap p end
p\s signal s in p end

+ macros, ex: s ·⊃ p := {(s?1 · 2)∗}; s ⊃ p

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Classical Behavioral Semantics

Notation for reductions: p
O , k
−−−→

I
p′

LBS (Logical Behavioral Semantics) [Gonthier]

{ the reference semantics

DS (Deterministic Semantics): [Tardieu]

avoids non-determinism in p\s
{ same value of s in both branches

RDS (Reactive Deterministic Semantics): [Tardieu]

adds error cases (k ∈ N ∪ {∞})
{ instantaneous loop looperror
{ p\s: different values de s dans p signalMP / signalPM
{ + propagation (only p\s) signal∞

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Difference for signal with s present

p
O+, k+
−−−−−→

I∪{s}
p′ s ∈ O+

LBS
p\s

O+\{s}, k+
−−−−−−−−→

I
p′\s

p
O+, k+
−−−−−→

I∪{s}
p′ p

O−, k−
−−−−−→

I\{s}
p′ s ∈ O+,O−

DS
p\s

O+\{s}, k+
−−−−−−−−→

I
p′\s

p
O+, k+
−−−−−→

I∪{s}
p′ p

O−, k−
−−−−−→

I\{s}
p′ s ∈ O+,O− k+, k− < ∞

RDS
p\s

O\{s}, k+
−−−−−−−→

I
p′\s

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Properties

deterministic reactive (i.e. total)
LBS % %

DS ! %

RDS ! !

{ RDS can be a function

If k < ∞, RDS ⇐⇒ DS =⇒ LBS

In p
O , k
−−−→

I
p′, if k , 1, then p′ = nothing.

{ requires to add δ δ k p := if k = 1 then p else nothing

p
O ,∞
−−−−→RDS

I
p′ ⇐⇒ we use looperror or signalMP/signalPM

{ requires to formally define “use”
{ (p, I) error-free := they are not used in the reduction

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

What about Coq?

All results in this talk are proved in Coq

Feedback from using Coq:

I,O = events or sets of signals?
{ Gérard Berry vs. Olivier Tardieu

higher-order logic: one definition for determinism

Definition deterministic {T : Type} (R : semantics T) p :=
forall I O1 k1 p1 O2 k2 p2 , R p I O1 k1 p1 → R p I O2 k2 p2 →

S.Equal O1O2 ∧ k1 = k2 ∧ p1 = p2 .

compatibility w.r.t. set equality on I and O

find bugs:
������������

p
O ,∞
−−−−→RDS

I
0 =⇒ O = ∅ !s || 0* [Tardieu]

{ should we change the semantics?

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Why a constructive semantics?

remove all problems of:
non-determinism
backward dependency across sequence

closer to circuit semantics [Berry, Mendler, Shiple]

constructive circuit = stabilizes for all delays

based on what Must/Can be done
{ only affects p\s

s true in p ⇐⇒ s ∈ Must(p,E)
s false in p ⇐⇒ s < Can(p,E)
otherwise, we block!

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

The Constructive Case

CBS = Constructive Behavioral Semantics
cf. Esterel Constructive Book

Must: what must be done

Musts : set of signals that must be emitted

Mustk : the return code that p must return (at most 1)

Can: what can be done

Cans : set of signals that can be emitted

Cank : set of return codes that p can return

Again I, O : events or sets?
{ sets but also requires A , set of absent signals

Notation: p
O , k
↪−−−−→CBS

A ,I
p′

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Properties of Can/Must

Max K L defined by Gonthier’s formula

Max K L = {n ∈ N | ∃kl, k ∈ K ∧ l ∈ L ∧ n = max k l}

= {n ∈ K ∪ L | n > min K ∧ n > min L}

+ its specification:
Max K L := filter (> (min L)) (filter (> (min K)) (K ∪ L))
with x ∈ (Max K L) ⇐⇒ ∃kl, k ∈ K ∧ l ∈ L ∧ x = max k l

Must p E ⊆ Can+ p E (separate proof)

monotony of Can and Must
{ big mutual induction: 400 l. of proof!

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Properties of CBS

Deterministic but not reactive
{ Must/Can may get stuck
{ we can use ∞ to track errors

In p
O , k
↪−−−−→

A ,I
p′, if k , 1, then p′ = nothing (requires some δ)

CBS et Can/Must: if p
O , k
↪−−−−→

A ,I
p′, then

s ∈ Musts p EA ,I =⇒ s ∈ O + idem for k
s ∈ O =⇒ s ∈ Canm

s p EA ,I + idem for k

Same for LBS (mutually recursive proof of 200 l.)

CBS =⇒ LBS mais CBS 6=⇒ RDS

If p error-free, CBS =⇒ RDS
{ CBS ignores errors inside unreachable code (p\s)

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Why a state semantics?

Intermediate step between Esterel and circuits:

on source code but the program does not change (unlike LBS)

program counters indicate where we are

state semantics very close to circuit semantics

pause statements are mapped to registers

↓ emit s; pause; present i then pause else emit s
{s}, 1
−−−−→

I

emit s; pause; ↓ present i then pause else emit s
{s}, 0
−−−−→

I

emit s; pause; present i then pause else emit s↓

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Commands and states

state = command being evaluated

p̂, q̂ := 0
1
T + 2
!s
s?p · q
s ⊃ p
p; q
p || q

| p || q̂ | p̂ || q̂

p∗
↑ p
{p}
p\s

p̂ = state
(computation pending)

p = command
(computation done)

p := p̂ | p (term)

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Commands and states

state = command being evaluated

p̂, q̂ :=
1

s?p · q
s ⊃ p
p; q
p || q

| p || q̂ | p̂ || q̂

p∗
↑ p
{p}
p\s

p̂ = state
(computation pending)

p = command
(computation done)

p := p̂ | p (term)

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Commands and states

state = command being evaluated

p̂, q̂ :=
1̂ activated pause

s?p · q
s ⊃ p
p; q
p || q

| p || q̂ | p̂ || q̂

p∗
↑ p
{p}
p\s

p̂ = state
(computation pending)

p = command
(computation done)

p := p̂ | p (term)

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Commands and states

state = command being evaluated

p̂, q̂ :=
1̂ activated pause

s?p̂ · q | s?p · q̂
s ⊃ p̂
p̂; q | p; q̂
p̂ || q | p || q̂ | p̂ || q̂
p̂∗
↑ p̂
{p̂}
p̂\s

p̂ = state
(computation pending)

p = command
(computation done)

p := p̂ | p (term)

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Commands and states

state = command being evaluated

p̂, q̂ :=
1̂ activated pause

s?p̂ · q | s?p · q̂
s ⊃ p̂
p̂; q | p; q̂
p̂ || q | p || q̂ | p̂ || q̂
p̂∗
↑ p̂
{p̂}
p̂\s

p̂ = state
(computation pending)

p = command
(computation done)

p := p̂ | p (term)

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

State Semantics

LSBS = Logical State Behavioral Semantics

2 types of rules: s-rules (start) and r-rules (resume)
{ 2 distinct inductive definitions:

first sLSBS from commands to terms
then rLSBS from states to terms

{ LSBS = sLSBS ∪ rLSBS from terms to terms

main theorem:

p̂
O , k
−−−→rLSBS

I
p′ =⇒ ∃q,E(p̂)

O , k
−−−→LBS

I
q ∧ δ k (E(p′)) ≡ q

where p ≡ q := “p and q equivalent”
E(p̂) := expansion of p̂

= what will be executed in the next tick

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Bugs corrected

p ≡ q: immediate equivalence vs. bisimulation

p

q
p′≡imm vs.

p

q

p′

q′

. . .

. . .
≡ ≡

≡imm not compatible with the kernel:
p ≡imm q 6=⇒ s ⊃ p ≡imm s ⊃ q (when s is present)
bisimulation requires coinduction

small mistake in the definition of states:
p || q allows two commands (p || q)

p̂
O , k
−−−→rLSBS

I
p′ =⇒ (k = 1 ⇐⇒ p′ state)

{ was wrong for p || q (when kp = 1 and kq > 1)

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Constructive State Behavioral Semantics

Yet another semantics: CSBS

Same restriction on LSBS as going from LBS to CBS
(signal declaration must be constructive)
{ Must/Can extended to states

proofs work exactly the same

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Conclusion & Next Steps

Summary:
formal proofs of “obvious results” (except the wrong ones)

iron out a few bugs

only semantics here
{ necessary to compare Esterel and circuits

Next steps:
get to circuits!
{ write their semantics
{ (finally) write the compiler

prove that compilation preserve semantics

handle schizophrenia & verify optimization

toward full Esterel?

Thank you
for your attention

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Conclusion & Next Steps

Summary:
formal proofs of “obvious results” (except the wrong ones)

iron out a few bugs

only semantics here
{ necessary to compare Esterel and circuits

Next steps:
get to circuits!
{ write their semantics
{ (finally) write the compiler

prove that compilation preserve semantics

handle schizophrenia & verify optimization

toward full Esterel?

Thank you
for your attention

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits

	Introduction
	Classical Behavioral Semantics
	Constructive Semantics
	State semantics
	Conclusion

