Towards a Cog-Verified Compiler
from Esterel to Circuits

Lionel Riea

Collége de France

December 4th, 2014

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Introduction
Q0

Long-term goal

Follow the ideas of CompCert:

@ Esterel kernel is simpler than C
~» | only consider Pure Esterel v5

@ Coq allows extracting the compiler

@ | could also go to C code and link with CompCert

@ several transformation passes
~» semantics is preserved across passes

Here, only the formalization of several semantics of Esterel
(it’s just the beginning!)

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Introduction
O80

High-level view of semantics

A reaction P —* P’ of P into P’ in several ticks

One reduction p — ... — g for each clock tick, having:
@ inputs /
@ outputs O
@ return code k

, : . Ok
| only consider reductions, written p — p
I

. . . {s},1
emit s; pause; present i then pause else emits —
I
: . {s},0
present i then pause else emits —
I

nothing

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Introduction
OO0

Pure Esterel kernel syntax (commands)

p,g:=10 nothing
1 pause
T+2 exit T T a de Bruijn integer
Is emit s
s’p-q present s then p else g end
SDOp suspend p when s
p:q
pllq
px loop p end
Tp does not exist in the language
{p} trap p end
p\s signal s in p end

+macros, ex: sop:={(s?1-2)«};s>p

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Classical Behavioral Semantics
Q00

Classical Behavioral Semantics

0,k
Notation for reductions: p — p’
I

@ LBS (Logical Behavioral Semantics) [Gonthier]
~» the reference semantics

@ DS (Deterministic Semantics): [Tardieu]
avoids non-determinism in p\s
~» same value of s in both branches

@ RDS (Reactive Deterministic Semantics): [Tardieu]
adds error cases (k € N U {oo})
~» instantaneous loop looperror
~» p\s: different values de s dans p signalMP / signalPM
~» + propagation (only p\s) signaleo

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Classical Behavioral Semantics
(o] IeJe)

Difference for signal with s present

Oy ky
—

p’ se Oy
1U{s}) LBS
Os\shky
p\s —I> p’\s
0.,k 0.k
/N ——=p se04,0_
Iufs} I\{s}
DS
Oi\sh kg,
p\s — P \s
0.,k 0.k
5 —p se€0y,0. ki, k. < oo
1U{s) I\(s} RDS
O\{s}, k¢

p\s — p’\s

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Classical Behavioral Semantics
(o]e] Je)

Properties
deterministic | reactive (i.e. total)
o | LBS X X
DS v X
RDS v v

~> RDS can be a function

@ Ifk <00, RDS &< DS = LBS

o.k
@ Inp—p,

!
~» requires to add ¢

0,

if kK # 1, then p’ = nothing.

0k p = if k = 1 then p else nothing

@ p ——ps P & we use looperror or signalMP/signalPM
I

~» requires to formally define “use”
~> (p, 1) error-free := they are not used in the reduction

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Classical Behavioral Semantics
OO0

What about Coq?

All results in this talk are proved in Coq

Feedback from using Coq:

@ [/, 0 = events or sets of signals?
~» Gérard Berry vs. Olivier Tardieu

@ higher-order logic: one definition for determinism

Definition deterministic {T : Type} (R : semantics T) p :=
forall | O1k1 P1 02k2 P2, Rp|O1k1 p1—>Rp|02k2 P2 —
S.Equal O102A ki =ko A P1 = pP2.

@ compatibility w.r.t. set equality on I and O
0,
@ find bugs: p —rp O=g Is || O* [Tardieu]

~» should we change the semantics?

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Constructive Semantics
000

Why a constructive semantics?

@ remove all problems of:

@ non-determinism
e backward dependency across sequence

@ closer to circuit semantics [Berry, Mendler, Shiple]
constructive circuit = stabilizes for all delays

@ based on what Must/Can be done
~» only affects p\s
e strueinp < s e Must(p,E)
e sfalseinp < s ¢ Can(p,E)
e otherwise, we block!

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Constructive Semantics
(o] IeJe)

The Constructive Case

CBS = Constructive Behavioral Semantics
cf. Esterel Constructive Book

Must: what must be done

@ Mustg: set of signals that must be emitted

@ Mustk: the return code that p must return (at most 1)
Can: what can be done

@ Cang: set of signals that can be emitted

@ Cang: set of return codes that p can return

Again I, O: events or sets?
~» sets but also requires A, set of absent signals

. 0.k ,
Notation: P —cas P
Al

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Properties of Can/Must

@ Max K L defined by Gonthier’s formula

Max KL ={neN|3dklL,ke KAle L An=maxkl}
={neKUL|nzminKAnzminlL}

+ its specification:

Max K L := filter (> (min L)) (filter (> (min K)) (KU L))
with x € (Max KL) < 3Jkl,k e KAle L Ax=maxkl

@ Mustp E C Can™ p E (separate proof)

@ monotony of Can and Must
~» big mutual induction: 400 I. of proof!

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Constructive Semantics
OO0

Properties of CBS

@ Deterministic but not reactive
~» Must/Can may get stuck
~> We can use oo to track errors

0.k) . .
Inp —— p’, if k # 1, then p’ = nothing (requires some 6)
Al

O,
CBS et Can/Must: if p —% p, then
Al

@ seMustspEp; = s€ O +idem for k
e s€e0 = seCan]pEs; +idem fork

Same for LBS (mutually recursive proof of 200 I.)

CBS — LBS mais CBS == RDS

If p error-free, CBS — RDS
~» CBS ignores errors inside unreachable code (p\s)

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

State semantics
Q000

Why a state semantics?

Intermediate step between Esterel and circuits:
@ on source code but the program does not change (unlike LBS)
@ program counters indicate where we are
@ state semantics very close to circuit semantics
@ pause statements are mapped to registers
| emit s; pause; present i then pause else emit s ﬂ

I
. . . {s},0
emit s; pause; | presenti then pause else emits —
I

emit s; pause; present i then pause else emit s|

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

State semantics
O0000

Commands and states

state = command being evaluated

f’! 67 =10

1

T+2
Is
s™p-q
sOp
p:q
pliq
p*
Tp
{p}
p\s

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

State semantics
O0000

Commands and states

state = command being evaluated

f’!a:=

s™p-q
SDOp
p;q
pllg
p*

Tp
{p}
p\s

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

State semantics
O0000

Commands and states

state = command being evaluated

f’! 67 =
1 activated pause

s™p-q
SDOp
p;q
pllg
p*

Tp
{p}
p\s

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

State semantics
O0000

Commands and states

state = command being evaluated

f’! 67 =
1 activated pause

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

State semantics
O0000

Commands and states

state = command being evaluated

f’! 67 =
i activated pause
p = state
s-q | s’p-q (computation pending)
S_D P p = command
P | pig A (computation done)
pllg | pllg | pligq
p p=p | p (term)
TP
{p}
p\s

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

State semantics
O8O0

State Semantics

LSBS = Logical State Behavioral Semantics

@ 2 types of rules: s-rules (start) and r-rules (resume)
~» 2 distinct inductive definitions:

first sSLSBS from commands to terms
then rLSBS from states to terms
~» LSBS = sL.SBS U rLSBS from terms to terms

@ main theorem:
~ O,k o
p _I)rLSBS P — 39.8(p) _I’LBS qAdk (S(p))=q

where p = q:="“p and q equivalent”
&(P) = expansion of p
= what will be executed in the next tick

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

State semantics

Bugs corrected

@ p = q: immediate equivalence vs. bisimulation

imm _3p’ vs.

Qo ---5

R
q

@ =;mm hot compatible with the kernel:
PSimmQq@ == SOP=immS>OQ

(when s is present)
@ bisimulation requires coinduction

@ small mistake in the definition of states:
pllq allows two commands (p || q)

. O,k
0 p—uwsp = (k=1 < p’ state)
I

~» was wrong for p|| q (when k, =1and kg > 1)

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

State semantics
0000

Constructive State Behavioral Semantics

Yet another semantics: CSBS

@ Same restriction on LSBS as going from LBS to CBS
(signal declaration must be constructive)
~> Must/Can extended to states

@ proofs work exactly the same

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Conclusion & Next Steps

Summary:
@ formal proofs of “obvious results” (except the wrong ones)
@ iron out a few bugs
@ only semantics here
~» necessary to compare Esterel and circuits

Next steps:
@ get to circuits!
~> write their semantics
~» (finally) write the compiler

@ prove that compilation preserve semantics
@ handle schizophrenia & verify optimization

@ toward full Esterel?

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

Conclusion & Next Steps

Summary:
@ formal proofs of “obvious results” (except the wrong ones)
@ iron out a few bugs

@ only semantics here
~» necessary to compare Esterel and circuits

Next steps: Thank you
@ get to circuits! i
~ write their semantics for your attention

~» (finally) write the compiler
@ prove that compilation preserve semantics
@ handle schizophrenia & verify optimization

@ toward full Esterel?

Lionel Riea Towards a Cog-Verified Compiler from Esterel to Circuits

	Introduction
	Classical Behavioral Semantics
	Constructive Semantics
	State semantics
	Conclusion

