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Long-term goal

Follow the ideas of CompCert:

Esterel kernel is simpler than C
{ I only consider Pure Esterel v5

Coq allows extracting the compiler

I could also go to C code and link with CompCert

several transformation passes
{ semantics is preserved across passes

Here, only the formalization of several semantics of Esterel
(it’s just the beginning!)

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits



Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

High-level view of semantics

A reaction P −→∗ P′ of P into P′ in several ticks

One reduction p → . . .→ q for each clock tick, having:

inputs I

outputs O

return code k

I only consider reductions, written p
O , k
−−−→

I
p′

emit s; pause; present i then pause else emit s
{s}, 1
−−−−→

I

present i then pause else emit s
{s}, 0
−−−−→

I

nothing
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Pure Esterel kernel syntax (commands)

p, q := 0 nothing
1 pause
T + 2 exit T T a de Bruijn integer
!s emit s
s?p · q present s then p else q end
s ⊃ p suspend p when s
p; q
p || q
p∗ loop p end
↑ p does not exist in the language
{p} trap p end
p\s signal s in p end

+ macros, ex: s ·⊃ p := {(s?1 · 2)∗}; s ⊃ p
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Classical Behavioral Semantics

Notation for reductions: p
O , k
−−−→

I
p′

LBS (Logical Behavioral Semantics) [Gonthier]

{ the reference semantics

DS (Deterministic Semantics): [Tardieu]

avoids non-determinism in p\s
{ same value of s in both branches

RDS (Reactive Deterministic Semantics): [Tardieu]

adds error cases (k ∈ N ∪ {∞})
{ instantaneous loop looperror
{ p\s: different values de s dans p signalMP / signalPM
{ + propagation (only p\s) signal∞
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Difference for signal with s present

p
O+, k+
−−−−−→

I∪{s}
p′ s ∈ O+

LBS
p\s

O+\{s}, k+
−−−−−−−−→

I
p′\s

p
O+, k+
−−−−−→

I∪{s}
p′ p

O−, k−
−−−−−→

I\{s}
p′ s ∈ O+,O−

DS
p\s

O+\{s}, k+
−−−−−−−−→

I
p′\s

p
O+, k+
−−−−−→

I∪{s}
p′ p

O−, k−
−−−−−→

I\{s}
p′ s ∈ O+,O− k+, k− < ∞

RDS
p\s

O\{s}, k+
−−−−−−−→

I
p′\s
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Properties

deterministic reactive (i.e. total)
LBS % %

DS ! %

RDS ! !

{ RDS can be a function

If k < ∞, RDS ⇐⇒ DS =⇒ LBS

In p
O , k
−−−→

I
p′, if k , 1, then p′ = nothing.

{ requires to add δ δ k p := if k = 1 then p else nothing

p
O ,∞
−−−−→RDS

I
p′ ⇐⇒ we use looperror or signalMP/signalPM

{ requires to formally define “use”
{ (p, I) error-free := they are not used in the reduction
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What about Coq?

All results in this talk are proved in Coq

Feedback from using Coq:

I,O = events or sets of signals?
{ Gérard Berry vs. Olivier Tardieu

higher-order logic: one definition for determinism

Definition deterministic {T : Type} (R : semantics T) p :=
forall I O1 k1 p1 O2 k2 p2 , R p I O1 k1 p1 → R p I O2 k2 p2 →

S.Equal O1O2 ∧ k1 = k2 ∧ p1 = p2 .

compatibility w.r.t. set equality on I and O

find bugs:
������������

p
O ,∞
−−−−→RDS

I
0 =⇒ O = ∅ !s || 0* [Tardieu]

{ should we change the semantics?
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Why a constructive semantics?

remove all problems of:
non-determinism
backward dependency across sequence

closer to circuit semantics [Berry, Mendler, Shiple]

constructive circuit = stabilizes for all delays

based on what Must/Can be done
{ only affects p\s

s true in p ⇐⇒ s ∈ Must(p,E)
s false in p ⇐⇒ s < Can(p,E)
otherwise, we block!
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The Constructive Case

CBS = Constructive Behavioral Semantics
cf. Esterel Constructive Book

Must: what must be done

Musts : set of signals that must be emitted

Mustk : the return code that p must return (at most 1)

Can: what can be done

Cans : set of signals that can be emitted

Cank : set of return codes that p can return

Again I, O : events or sets?
{ sets but also requires A , set of absent signals

Notation: p
O , k
↪−−−−→CBS

A ,I
p′
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Properties of Can/Must

Max K L defined by Gonthier’s formula

Max K L = {n ∈ N | ∃kl, k ∈ K ∧ l ∈ L ∧ n = max k l}

= {n ∈ K ∪ L | n > min K ∧ n > min L}

+ its specification:
Max K L := filter (> (min L)) (filter (> (min K)) (K ∪ L))
with x ∈ (Max K L) ⇐⇒ ∃kl, k ∈ K ∧ l ∈ L ∧ x = max k l

Must p E ⊆ Can+ p E (separate proof)

monotony of Can and Must
{ big mutual induction: 400 l. of proof!
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Properties of CBS

Deterministic but not reactive
{ Must/Can may get stuck
{ we can use ∞ to track errors

In p
O , k
↪−−−−→

A ,I
p′, if k , 1, then p′ = nothing (requires some δ)

CBS et Can/Must: if p
O , k
↪−−−−→

A ,I
p′, then

s ∈ Musts p EA ,I =⇒ s ∈ O + idem for k
s ∈ O =⇒ s ∈ Canm

s p EA ,I + idem for k

Same for LBS (mutually recursive proof of 200 l.)

CBS =⇒ LBS mais CBS 6=⇒ RDS

If p error-free, CBS =⇒ RDS
{ CBS ignores errors inside unreachable code (p\s)
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Why a state semantics?

Intermediate step between Esterel and circuits:

on source code but the program does not change (unlike LBS)

program counters indicate where we are

state semantics very close to circuit semantics

pause statements are mapped to registers

↓ emit s; pause; present i then pause else emit s
{s}, 1
−−−−→

I

emit s; pause; ↓ present i then pause else emit s
{s}, 0
−−−−→

I

emit s; pause; present i then pause else emit s↓
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Commands and states

state = command being evaluated

p̂, q̂ := 0
1
T + 2
!s
s?p · q
s ⊃ p
p; q
p || q

| p || q̂ | p̂ || q̂

p∗
↑ p
{p}
p\s

p̂ = state
(computation pending)

p = command
(computation done)

p := p̂ | p (term)
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State Semantics

LSBS = Logical State Behavioral Semantics

2 types of rules: s-rules (start) and r-rules (resume)
{ 2 distinct inductive definitions:

first sLSBS from commands to terms
then rLSBS from states to terms

{ LSBS = sLSBS ∪ rLSBS from terms to terms

main theorem:

p̂
O , k
−−−→rLSBS

I
p′ =⇒ ∃q,E(p̂)

O , k
−−−→LBS

I
q ∧ δ k (E(p′)) ≡ q

where p ≡ q := “p and q equivalent”
E(p̂) := expansion of p̂

= what will be executed in the next tick

Lionel Rieg Towards a Coq-Verified Compiler from Esterel to Circuits



Introduction Classical Behavioral Semantics Constructive Semantics State semantics Conclusion

Bugs corrected

p ≡ q: immediate equivalence vs. bisimulation

p

q
p′≡imm vs.

p

q

p′

q′

. . .

. . .
≡ ≡

≡imm not compatible with the kernel:
p ≡imm q 6=⇒ s ⊃ p ≡imm s ⊃ q (when s is present)
bisimulation requires coinduction

small mistake in the definition of states:
p || q allows two commands (p || q)

p̂
O , k
−−−→rLSBS

I
p′ =⇒ (k = 1 ⇐⇒ p′ state)

{ was wrong for p || q (when kp = 1 and kq > 1 )
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Constructive State Behavioral Semantics

Yet another semantics: CSBS

Same restriction on LSBS as going from LBS to CBS
(signal declaration must be constructive)
{ Must/Can extended to states

proofs work exactly the same
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Conclusion & Next Steps

Summary:
formal proofs of “obvious results” (except the wrong ones)

iron out a few bugs

only semantics here
{ necessary to compare Esterel and circuits

Next steps:
get to circuits!
{ write their semantics
{ (finally) write the compiler

prove that compilation preserve semantics

handle schizophrenia & verify optimization

toward full Esterel?

Thank you
for your attention
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